Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T23:46:50.981Z Has data issue: false hasContentIssue false

The Role of Oxygen in p-Type InP

Published online by Cambridge University Press:  25 February 2011

J. Michel
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07041
J. Jeong
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07041
K.M. Lee
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07041
L.C. Kimerling
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07041
Get access

Abstract

We have studied the influence of oxygen on the optical properties of Be implanted InP. Be implanted p-type InP without oxygen shows a strong deep photoluminescence (PL) band at 0.82 eV following anneal. As the oxygen concentration increases, the 0.82 eV PL-band disappears. We attribute the disappearance of this PL-band to the formation of oxygen complexes with the implantation induced defects. In epitaxial grown, nominally undoped InP a new PL-line is observed at ~1.2 eV. The paramagnetic state of the phosphorus on indium P^ antisite is observed by optically detected magnetic resonance (ODMR) as a modulation of the photoluminescence in all Be implanted samples without oxygen. The antisite resonance is detected as a reduction of the 0.82 eV PL-band and the 1.2 eV PL-band. The observation of the Fe3+ resonance by ODMR spectroscopy is reported for the first time.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Donnelly, J.P. and Hurwitz, C.E., Appl. Phys. Lett. 31, 418 (1977).Google Scholar
2 Inada, T., Taka, S. and Yamamoto, Y., J. Appl. Phys. 52, 6623 (1981).Google Scholar
3 Masum Choudhury, A.N.M., Tabatabaie-Alavi, K., Fonstad, C.G., and Gelpey, J.C., Appl. Phys. Lett. 43, 381 (1983).Google Scholar
4 Konig, U., Hilgarth, J., and Tiemann, H.-H., J. Electron. Mater. 14, 311 (1985).Google Scholar
5 Bhattacharya, P.K., Goodman, W.H., and Rao, M.V., J. Appl. Phys. 55, 509 (1984).Google Scholar
6 Skomme, B.J., Stillman, G.E., Oberstar, J.D., and Chan, S.S., Appl. Phys. Lett. 44, 319 (1984).Google Scholar
7 Rao, M.V., Aina, O.A., Fathimulla, A., and Thompson, P.E., J. Appl. Phys. 64, 2426 (1988).Google Scholar
8 Deiri, M., Kana-ah, A., Cavenett, B.C., Kennedy, T.A., and Wilsey, N.D., J. Phys. C 17, L793 (1984).Google Scholar
9 Kana-ah, A., Deiri, M., Cavenett, B.C., Wilsey, N.D., and Kennedy, T.A., J. Phys. C 18, L619 (1985).Google Scholar
10 Robins, L.H., Taylor, P.C., and Kennedy, T.A., Phys. Rev. B 38, 13227 (1988).Google Scholar
11 Kennedy, T.A., Glaser, E. R., Molnar, B., and Spencer, M.G., submitted to ICS&T DCS 1989, Yokohama, JapanGoogle Scholar
12 Hess, K., Stath, N., and Benz, K.W., J. Electrochem. Soc: Solid State Sci. Technol. (Sept. 1974) 1208.Google Scholar
13 Maeda, K., J. Phys. Chem. Solids 26, 595 (1965).Google Scholar
14 Swaminathan, V., Donnelly, V.M., and Long, J., J. Appl. Phys. 58, 4565 (1985).Google Scholar
15 Bogardus, E.H. and Bebb, H.B., Phys. Rev. 176, 993 (1968).Google Scholar
16 Chiao, S.H. and Antypas, G.A., J. Appl. Phys 49, 466 (1978).Google Scholar
17 Cavenett, B.C., Kana-ah, A., Deiri, M., Kennedy, T.A., and Wilsey, N.D. J. Phys. C 18, L473 (1985).Google Scholar
18 Kennedy, T.A. and Wilsey, N.D., J. Cryst. Growth 83, 198 (1987)Google Scholar
19 Kennedy, T.A. and Wilsey, N.D., Appl. Phys. Lett. 44, 1089 (1984).Google Scholar
20 Tapster, P.R., Skolnick, M.S., Humphreys, R.G., Dean, P.J., Cockayne, B., and MacEwan, W.T., J. Phys. C: Solid State Phys. 14, C5069 (1981).Google Scholar