Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-09T22:06:42.759Z Has data issue: false hasContentIssue false

The Role of Silicon Monohydride and Dihydride in the Photoluminescence of Porous Silicon and Photoluminescence of Porous Silicon Buried Underneath Epitaxial GaP

Published online by Cambridge University Press:  15 February 2011

C. Tsai
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
K.-H. Li
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
J. Sarathy
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
K. Jung
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
S. Shih
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
B. K. Hance
Affiliation:
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712
J. M. White
Affiliation:
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712
D.-L. Kwong
Affiliation:
Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712
P. R. Sharps
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709
M. L. Timmons
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709
R. Venkatasubramanian
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709
J. A. Hutchby
Affiliation:
Research Triangle Institute, Research Triangle Park, NC 27709
J. C. Campbell
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712
Get access

Abstract

Thermal annealing studies of the photoluminescence (PL) intensity and Fourier-transform infrared (FTIR) spectroscopy have been performed concurrently on porous Si. A sharp reduction in the PL intensity is observed for annealing temperatures > 300 °C and this coincides with desorption of hydrogen from the SiH2 surface species. The role of silicon hydride species on the photoluminescence intensity has been studied. The surfaces of luminescent porous Si samples were converted to a predominate SiH termination using a remote H-plasma. The as-passivated samples were then immersed in various concentrations of hydrofluouric solutions to regulate the recovery of SiH2 termination on the surface. Photoluminescence measurements and transmission Fourier-transform infrared spectroscopy have shown that predominant silicon monohydride (SiH) termination results in weak photoluminescence. In contrast, it has been observed that the appearance of silicon dihydride (SiH2) coincides with an increase in the photoluminescence intensity. To achieve electroluminescence it will be beneficial to generate carriers with sufficient energy to populate the states of the quantum-confined Si structures. A viable method to accomplish this is to utilize a wide-bandgap heterojunction injector such as GaP. Toward that end we report the successful formation of porous Si buried underneath GaP islands and we demonstrate that the buried porous Si layer exhibits strong photoluminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
2. Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., and Muller, F., Appl. Phys. Lett. 59, 304 (1991).Google Scholar
3. Cullis, A.G., and Canham, L.T., Nature. Lett. 353, 26 (1991).Google Scholar
4. Furufkawa, S. and Mijasati, T., Phys. Rev. B38, 5726 (1988).Google Scholar
5. Wolford, D. J., Scott, B. A., Reimer, J. A., and Bradley, J. A., Physica B 117/118, 920 (1983).Google Scholar
6. Street, R. A., in Semiconductors and Semimetals, edited by Pankove, J. I., vol.21, part B, p.197, Academic Press, Orlando, FL, 1984.Google Scholar
7. Rao, A. Venkateswara, Ozanam, F., and Chazalviel, J.-N., J.Electrochem. Soc. 138, 153 (1991)Google Scholar
8. Gupta, P., Colvin, V.L., and George, S.M., Phys. Rev. B37, 8234 (1988)Google Scholar
9. Dillon, A. C., Gupta, P., Robinson, M. B., Bracker, A. S., George, S. M., J. Electron Spectrosc. Relat. Phenom. 54/55, 1085 (1990).CrossRefGoogle Scholar
10. Gupta, P., Dillon, A. C., Coon, P. A., and George, S. M., Chem. Phys. Lett. 176, 128 (1991).CrossRefGoogle Scholar
11. Herino, R., Bomchil, G., Barla, K., and Bertrand, C., J. Electrochem. Soc. 134,1994 (1987).Google Scholar
12. Beale, M.I.J., Benjamin, J.D., Uren, M.J., Chew, N.G. and Cullis, A.G., J. Crystal Growth 73, 622 (1985).CrossRefGoogle Scholar
13. Bomchil, G.,Halimaoui, A., and Herino, R., Microelectronic Engineering 8,293 (1988).Google Scholar
14. Chung, S.F., Collins, S.D., and Smith, R.L., Appl. Phys. Lett. 55, 675 (1989).Google Scholar
15. Kannon, K. C. and White, J. M., J. Catal. 120, 314 (1989).Google Scholar
16. Kaiser, W., Keck, P. H., and Lange, C. F., Phys. Rev. 101, 1264 (1956).Google Scholar
17. Hrostowski, H. J. and Kaiser, R. H., Phys. Rev. 107, 966 (1957).CrossRefGoogle Scholar
18. Wagner, H., Butz, R., Backes, U., and Bruchmann, D., Solid State Comm. 38, 1155 (1981).Google Scholar
19. Stucki, F., Schaefer, J. A., Anderson, J. R., Lapeyre, G. J., and Gopel, W., Solid State Comm. 47, 795 (1983).CrossRefGoogle Scholar
20. Bordsky, M. H., Cardona, M., and Cuomo, J. J., Phys. Rev. B 16, 3356 (1977).Google Scholar
21. Collins, R. J. and Fan, H. Y., Phys. Rev. 93, 674 (1954).CrossRefGoogle Scholar
22. Breaux, L., Anthony, B., Hsu, T., Banerjee, S., and Tasch, A. F., Appl. Phys. Lett. 55, 1885 (1989).CrossRefGoogle Scholar
23. Anthony, B., Hsu, T., Breaux, L., Qian, R., Banerjee, S., and Tasch, A., J. Electron. Mater. 19, 1027 (1990).Google Scholar
24. Chabal, Y. J., Raghavachari, K., Phys. Rev. Let. 53, 282 (1984).Google Scholar
25. Chabal, Y. J., Raghavachari, K., Phys. Rev. Let. 54, 1055 (1985).Google Scholar
26. Olson, J. M., AlJassim, M. M., Kibbler, A. E., and Jones, K. M., J. Crystal Growth 77, 515 (1986)Google Scholar
27. Blakeslee, A. E., Al-Jassim, M. M., and Asher, S. E., Mater. Res. Soc. Symp. Proc. 91, 105 (1987).Google Scholar
28. Tsao, S. S., Guilinger, T. R., Kelly, M. J., Kaushik, V. S., and Datye, A. K., J. Electrochem. Soc. 138, 1739 (1991).Google Scholar
29. Takagi, H., Ogawa, H., Yamasaki, Y., Ishizaki, A., and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).CrossRefGoogle Scholar