Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T20:42:38.963Z Has data issue: false hasContentIssue false

The Role of Type I Collagen Molecular Structure in Tendon Elastic Energy Storage

Published online by Cambridge University Press:  01 February 2011

Joseph W. Freeman
Affiliation:
Department of Orthopaedic Surgery University of Virginia Charlottesville, VA 22903
Frederick H. Silver
Affiliation:
Department of Pathology and Laboratory Medicine UMDNJ-Robert Wood Johnson Medical School 675 Hoes Lane Piscataway, NJ 08854
Mia D. Woods
Affiliation:
Department of Orthopaedic Surgery University of Virginia Charlottesville, VA 22903
Cato T. Laurencin
Affiliation:
Department of Orthopaedic Surgery University of Virginia Charlottesville, VA 22903 Department of Biomedical Engineering University of Virginia Charlottesville, VA 22903 Department of Chemical Engineering University of Virginia Charlottesville, VA 22903
Get access

Abstract

In order to facilitate locomotion and limb movement many animals store energy elastically in their tendons. The formation of crosslinked collagen fibers in tendons results in the conversion of weak, liquid-like embryonic tissues into tough elastic solids that can store energy and perform work. Collagen fibers in the form of fascicles are the major structural units found in tendons. The purpose of this paper is to review the literature on collagen self-assembly and tendon development and to relate this information to the development of elastic energy storage in nonmineralizing and mineralizing tendons. Of particular interest is the mechanism by which energy is stored in tendons during locomotion. In the turkey, much of the force generated by the gastrocnemius muscle is stored as elastic energy during tendon deformation and not within the muscle. As limbs move, the tendons are strained, causing the collagen fibers in the extracellular matrices to stretch. Through the analysis of turkey tendons, collagen fibers, and a molecular model, it is hypothesized that elastic energy is stored in the flexible regions of the collagen molecule. Data from the molecular model, mineralized fibers, and turkey tendons show that the presence of calcium and phosphate ions causes an increase in elastic energy stored per unit strain. Based on the theoretical modeling studies, the increase in stress with strain is a result of the initiation of stretching of the rigid regions of collagen molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alexander, R. M., Animal Mechanics, 2nd ed. (Blackwell Scientific 1983).Google Scholar
2. Alexander, R. M., A. Zool. 24, 85 (1984).Google Scholar
3. Silver, F. H., Freeman, J. W., Horvath, I., and Landis, W. J., Biomacromol. 2, 750 (2001).Google Scholar
4. Christiansen, D. L. and Silver, F. H., Cells & Materials. 3, 177 (1993).Google Scholar
5. Silver, F. H., Christiansen, D. L., Snowhill, P. B., Chen, Y., and Landis, W. J., Biomacromol. 1, 180 (2000a).Google Scholar
6. Landis, W. J. and Silver, F. H., Comp. Biochem. Physiol A Mol. Integr. Physiol. 133, 1135 (2002).Google Scholar
7. McBride, D. J., Trelstad, R. L., and Silver, F. H., International Journal of Biological Macromolecules 10, 194 (1988).Google Scholar
8. Silver, F. H., Freeman, J. W., and Seehra, G. P., J Biomech. 36, 1529 (2003).Google Scholar
9. Silver, F. H., Christiansen, D. L., Snowhill, P. B., and Chen, Y., Connect Tissue Res. 42, 155 (2000).Google Scholar
10. Hofmann, H., Voss, T., Kuhn, K., and Engel, J., J. Mol. Biol., 172, 325 (1984).Google Scholar
11. Nestler, F. H. M., Hvidt, S., Ferry, J. D., and Veis, A., Biopolymers, 22, 1747 (1983).Google Scholar
12. Paterlini, M. G., Nemethy, G., Sheraga, H. A., Biopolymers 35, 607 (1995).Google Scholar
13. Silver, F. H., and Birk, D. E., Int J. Biol. Macromol. 6, 125 (1984).Google Scholar
14. Silver, F. H., Freeman, J. W., Horvath, I., Landis, W. J., Biomacromol. 2, 750 (2001b).Google Scholar
15. Freeman, J. W., Silver, F. H., J Theor Biol. 229, 371 (2004).Google Scholar
16. Nemethy, G., Gibson, K. D., Palmer, K. A., Yoon, C. N., Paterlini, G., Zagari, A., Rumsey, S., Scheraga, H. A., J. Phys. Chem. 96, 6472 (1992).Google Scholar
17. Bella, J., Brodsky, B., Berman, H. M., Connect. Tissue Res. 35, 401 (1996).Google Scholar
18. Mosler, E., Folkhard, W., Knorzer, E., Nemetschek-Gansler, H., Nemetschek, T., and Koch, M. H., J. Mol. Biol. 182, 589 (1985).Google Scholar
19. Holmes, D. F., Gilpin, C. J., Baldock, C., Ziese, U., Koster, A. J., and Kadler, K. E., Proc Natl Acad Sci U S A. 98, 7307 (2001).Google Scholar
20. Branden, C. and Tooze, J., 1999 Introduction to protein structure, Garland Publishing, Inc., New York, New York.Google Scholar
21. King, G., Brown, E. M., and Chen, J. M., Protein Eng. 9, 43–9 (1996).Google Scholar
22. Orgel, J. P., Miller, A., Irving, T. C., Fischetti, R. F., Hammersley, A. P., Wess, T. J., Structure. 9, 1061 (2001).Google Scholar
23. Brodsky, B., Eikenberry, E. F., Belbruno, K. C., Sterling, K., Biopolymers. 21, 935 (1982).Google Scholar
24. Pins, G. D., Huang, E. K., Christiansen, D. L., Silver, F. H., J Appl Polym Sci. 63, 1429 (1997).Google Scholar
25. Christiansen, D. L., Silver, F. H., Cells & Materials 3, 177 (1993).Google Scholar
26. Silver, F. H., Freeman, J. W., and DeVore, D., Skin Res. Technol. 7, 18 (2001a).Google Scholar
27. Dunn, M. G., Avasarala, P. N., and Zawadsky, J. P., J Biomed Mater Res. 27, 1545 (1993).Google Scholar
28. Gentleman, E., Lay, A. N., Dickerson, D. A., Nauman, E. A., Livesay, G. A., and Dee, K. C., Biomaterials. 24, 3805 (2003)Google Scholar
29. Silver, F. H., Christiansen, D. L., Snowhill, P. B., and Chen, Y., J. Appl. Polym. Sci. 79, 134 (2001).Google Scholar
30. Silver, F. H., Horvath, I., and Foran, D. J., Crit. Rev. Biomed. Eng. 29, 279 (2001c).Google Scholar
31. Puxkandl, R., Zizak, I., Paris, O., Keckes, J., Tesch, W., Bernstorff, S., Purslow, P., Fratl, P., Philos Trans R Soc Lond B Biol Sci. 357, 191 (2002).Google Scholar
32. Landis, W. J., Bone. 16, 533 (1995).Google Scholar
33. Cooper, J. A., Lu, H. H., Ko, F. K., Freeman, J. W., Laurencin, C. T., Biomaterials. 26, 1523 (2005).Google Scholar
34. Vunjak-Novakovic, G., Altman, G., Horan, R., and Kaplan, D. L., Annu Rev Biomed Eng. 6, 131 (2004).Google Scholar