Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-30T04:43:40.286Z Has data issue: false hasContentIssue false

Room-Temperature Synthesis and Electrical Properties of La, Nd and Gd Apatite-type Silicates

Published online by Cambridge University Press:  26 February 2011

Antonio F. Fuentes
Affiliation:
antonio.fernandez@cinvestav.edu.mx, Cinvestav, Unidad Saltillo, Carretera Saltillo-Monterrey Km. 13, Ramos Arizpe, Coahuila, 25900, Mexico
Luis G. Martinez-Gonzalez
Affiliation:
luis.martinez@cinvestav.edu.mx, Cinvestav, Unidad Saltillo, Carretera Saltillo-Monterrey Km. 13, Ramos Arizpe, Coahuila, 25900, Mexico
Karla J. Moreno
Affiliation:
karla.moreno@cinvestav.edu.mx, Cinvestav, Unidad Saltillo, Carretera Saltillo-Monterrey Km. 13, Ramos Arizpe, Coahuila, 25900, Mexico
Evelyn Rodriguez-Reyna
Affiliation:
evyal_20@hotmail.com, Cinvestav, Unidad Saltillo, Carretera Saltillo-Monterrey Km. 13, Ramos Arizpe, Coahuila, 25900, Mexico
Ulises Amador
Affiliation:
uamador@ceu.es, Facultad de Farmacia, Universidad San Pablo-CEU, Departamento de Quimica, Boadilla del Monte, Madrid, 28668, Spain
Get access

Abstract

We show in this paper the possibility of using mechanical milling to prepare apatite-type La, Nd and Gd silicates starting from stoichiometric mixtures of the constituent oxides. XRD patterns collected after grinding the starting mixtures for 9 hours contain only the characteristic reflections of the target materials with no other phase apparently present. Electrical conductivity data were successfully fitted to a Jonscher-type empirical expression with fractional exponent n included in the 0.35-0.75 range. Activation energies for oxygen migration were found to decrease as the size of the rare-earth cation increases. Therefore, the highest conductivity values were found for the apatite-type lanthanum silicate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Slater, P. R., Sansom, J. E. H., Tolchard, J. R., Chem. Rec. 4 (2004) 373.Google Scholar
2. Nakayama, S., Kageyama, T., Aono, H., Sadaoka, Y., J. Mater. Chem. 5 (1995) 1801.Google Scholar
3. Nakayama, S., Aono, H., Sadaoka, Y., Chem. Lett. 24 (1995) 431.Google Scholar
4. Jonscher, A. K., Dielectric Relaxation in Solids, Chelsea Dielectric Press, London 1983.Google Scholar
5. Funke, K., J. Non-Cryst. Solids 172–174 (1994) 1215.Google Scholar
6. Ngai, K. L., Tsang, K. Y., Phys. Rev. E 60 (1999) 4511.Google Scholar
7. Kharton, V. V., Shaula, A. L., Patrakeev, M. V., Waerenborgh, J. C., Rojas, D. P., Vyshatko, N. P., Tsipis, E. V., Yaremchenko, A. A., Marques, F. M. B., J. Electrochem. Soc. 151 (2004) A1236.Google Scholar
8. Tolchard, J. R., Islam, M. S., Slater, P. R., J. Mater. Chem. 13 (2003) 1956.Google Scholar
9. León-Reina, L., Porras-Vázquez, J., Losilla, E. R., Aranda, M. A. G., Solid State Ion. 177 (2006) 1307.Google Scholar
10. Okudera, H., Masubuchi, Y., Kikkawa, S., Yoshiasa, A., Solid State Ion. 176 (2005) 1473.Google Scholar