Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T00:35:52.303Z Has data issue: false hasContentIssue false

ScAlMgO4: An Oxide Substrate for GaN Epitaxy

Published online by Cambridge University Press:  21 February 2011

E. S. Hellman
Affiliation:
AT&T Bell Laboratories, P. O. Box 636, Murray Hill, New Jersey 07974, USA.
C. D. Brandle
Affiliation:
AT&T Bell Laboratories, P. O. Box 636, Murray Hill, New Jersey 07974, USA.
L. F. Schneemeyer
Affiliation:
AT&T Bell Laboratories, P. O. Box 636, Murray Hill, New Jersey 07974, USA.
D. Wiesmann
Affiliation:
AT&T Bell Laboratories, P. O. Box 636, Murray Hill, New Jersey 07974, USA.
I. Brener
Affiliation:
AT&T Bell Laboratories, P. O. Box 636, Murray Hill, New Jersey 07974, USA.
T. Siegrist
Affiliation:
AT&T Bell Laboratories, P. O. Box 636, Murray Hill, New Jersey 07974, USA.
G. W. Berkstresser
Affiliation:
AT&T Bell Laboratories, P. O. Box 636, Murray Hill, New Jersey 07974, USA.
D. N. E. Buchanan
Affiliation:
AT&T Bell Laboratories, P. O. Box 636, Murray Hill, New Jersey 07974, USA.
E. H. Hartford Jr.
Affiliation:
AT&T Bell Laboratories, P. O. Box 636, Murray Hill, New Jersey 07974, USA.
Get access

Abstract

We report the use of ScAlMgO4 as a substrate for the epitaxial growth of wurzitic GaN. The low misfit (+1.8%) allows coherent epitaxy of GaN, as observed by RHEED. The congruent melting of ScAlMgO4 makes Czochralski growth possible, suggesting that large, high quality substrates can be realized. Boules about 17mm in diameter are reported. We have used nitrogen-plasma molecular beam epitaxy to grow GaN epitaxial films onto ScAlMgO4 substrates. Band-gap photoluminescence has been observed from some of these films, depending primarily on the deposition conditions. A 3×3 superstructure has been observed by RHEED on the GaN surfaces. Structural analysis by x-ray diffraction indicates very good in-plane alignment of the GaN films. We also report thermal expansion measurements for ScAlMgO4.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakamura, S., Mat. Res.Soc. Symp. Proc. 339, 173 (1994).Google Scholar
2 Lester, S. D., Ponce, F. A., Craford, M. G. and Steigerwald, D. A., Appl. Phys. Lett. 66, 1249 (1995).Google Scholar
3 Lin, M. E., Sverdlov, B. N. and Morkoç, H., J. Appl. Phys. 74, 5038 (1993).Google Scholar
4 Moustakas, T. D., Lei, T. and Molnar, R. J., Physica B, 185, 36 (1993).Google Scholar
5 Kato, K., Kawada, I., Kimizuka, N. and Katsura, T., Z. Kristallog. 141, 314 (1975).Google Scholar
6 Kimizuka, N. and Mohri, T., J. Sol. St. Chem. 78, 78 (1989).Google Scholar
7 Hellman, E. S., Brandle, C. D., Schneemeyer, L. F., Wiesmann, D., Brener, I., Siegrist, T., Berkstresser, G.W., Buchanan, D. N. E. and Hartford, E. H. Jr., MRS Internet J. Nitride Semicond. Res. 1, 1 (1995).Google Scholar
8 Spah, R. J., Hess, H. F., Stormer, H. L., White, A. E. and Short, K. T., Appl. Phys. Lett 53, 441 (1988).Google Scholar
9 Hellman, E. S. and Hartford, E. H. Jr., Appl. Phys. Lett 64, 1341 (1994).Google Scholar
10 Matthews, J. W., in Epitaxial Growth. Part B Matthews, J. W., Eds. (Academic Press, New York, 1975), pp. 566.Google Scholar