Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-22T07:12:56.826Z Has data issue: false hasContentIssue false

Segregant Enhanced Fracture of Ceramics

Published online by Cambridge University Press:  26 February 2011

K. T. Faber
Affiliation:
Northwestern University, Department of Materials Science and Engineering, The Technological Institute, Evanston, IL 60208
Cynthia C. Hickenbottom
Affiliation:
The Ohio State University, Department of Ceramic Engineering, 2041 College Road, Columbus, OH 43210
Get access

Abstract

The fracture toughness and failure mode of ceramic materials are highly sensitive to the presence of impurities at grain boundaries. Magnesium oxide serves as a model material to investigate fracture with respect to impurity levels at grain boundaries. Lithium fluoride, added to MgO as a sintering aid, is retained as an intergranular phase. By post-fabrication heat treatment, the LiF is removed and a change in fracture mode follows. Transmission and scanning electron microscopy, along with analytical (atomic absorption spectroscopy and selective electrode analysis) and microanalytical (scanning Auger microprobe) techniques are used to follow the progression of LiF with heat treatment. The results of this study are compared to other oxides and carbide systems in which the fracture toughness has also been found to be sensitive to the amount and location of segregants.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. McMahon, C. J., Mat. Sci. Eng., 42, 215 1980.Google Scholar
2. Marcus, H. L. and Fine, M. E., J. Amer. Ceram. Soc. 55, 568 1972.Google Scholar
3. Johnson, W. C. and Stein, D. F., J. Amer. Ceram. Soc. 55, 485 1975.CrossRefGoogle Scholar
4. Funkenbusch, A. W. and Smith, D. W., Metall. Trans. 6A, 2299 (1975).Google Scholar
5. Jupp, R. S., Stein, D. F. and Smith, D. W., J. Mater. Sci 15, 96 1980.CrossRefGoogle Scholar
6. DeWith, G. and Hattu, N., J. Mater. Sci. 16 841 (1981).Google Scholar
7. Faber, K. T. and Evans, A. G., Acta metall. 31, 565 1982.CrossRefGoogle Scholar
8. Faber, K. T. and Evans, A. G., J. Amer. Ceram. Soc. 66, C94 (1983).Google Scholar
9. Lange, F. F., J. Mater. Sci. 10, 314 1975.CrossRefGoogle Scholar
10. Tajima, Y. and Kingery, W. D., J. Mater. Sci. 17, 2289 1982.Google Scholar
11. Brennan, J. J., in Tailoring Multiphase and Composite Ceramics, edited by Tressler, R. E., Messing, G. L., Pantano, C. C. and Newnham, R. E. (Plenum Press, New York, 1986), p. 549.Google Scholar
12. Mai, Y.-W. and Lawn, B. R., J. Amer. Ceram. Soc. 70, 289 1987.Google Scholar
13. Swanson, P. L., Fairbanks, C. J., Lawn, B. R., Mai, Y-W and Hockey, B. J., J. Amer. Ceram. Soc. 70, 279 1987.Google Scholar
14. Benecke, M. W., Olson, N. E. and Pask, J. A., J. Amer. Ceram. Soc. 50, 365 1967.CrossRefGoogle Scholar
15. Hart, P. E., Atkin, R. B. and Pask, J. A., J. Amer. Ceram. Soc. 53, 83 1970.CrossRefGoogle Scholar
16. Chantikul, P., Anstis, G. R., Lawn, B. R. and Marshall, D. B., J. Amer. Ceram. Soc. 65, 539 1981.Google Scholar
17. Marshall, D. B., Noma, T., and Evans, A. G., J. Amer. Ceram. Soc. 65, C175 (1982).Google Scholar
18. Johnson, W. C., Stein, D. F. and Rice, R. W., J. Amer. Ceram. Soc. 57, 342 (1974).Google Scholar
19. Haussonne, J. M., Desgardin, G., Bajolet, P. H. and Raveau, B., J. Amer. Ceram. Soc. 66, 801 1983.Google Scholar