Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-21T07:43:59.426Z Has data issue: false hasContentIssue false

Self-Assembling Functionalizable Polydiacetylenes and their Optical Properties

Published online by Cambridge University Press:  10 February 2011

M. Sukwattanasinitt
Affiliation:
Center for Advanced Materials and Department of Chemistry and Massachusetts 01854–2881
X. Wang
Affiliation:
Center for Advanced Materials and Department of Chemistry and Massachusetts 01854–2881
D-C. Lee
Affiliation:
Center for Advanced Materials and Department of Chemistry and Massachusetts 01854–2881
L. Li
Affiliation:
Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854–2881
J. Kumar
Affiliation:
Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854–2881
S. K. Tripathy
Affiliation:
Center for Advanced Materials and Department of Chemistry and Massachusetts 01854–2881
D. J. Sandman
Affiliation:
Center for Advanced Materials and Department of Chemistry and Massachusetts 01854–2881
Get access

Abstract

The alkoxycarbonylmethylurethanes of 9-(N-methyl-N-phenylamino)-5,7-nonadiyn-l-ol were synthesized and polymerized by 60Co gamma radiation. The resulting polydiacetylenes (PDA) are soluble, processable, and self-assemble into an acentric array. These PDAs are susceptible to postpolymerization functionalization via its dialkylaniline and ester groups, and hence comprise the most versatile PDA system for systematic chemical modification reported to date. Dialkylaniline functionalization via tetracyanoethylene and diazonium salt coupling led, respectively, to materials with interesting second order nonlinear optical properties and that exhibit directly photofabricated regular surface relief gratings. The latter materials provide the first example of a rigid rod polymer (lacking a detectable glass transition) to exhibit such phenomena. Moreover, these PDAs can form self-assembled multilayer structure in water by ester hydrolysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sukwattanasinitt, M., Wang, X., Li, L., Jiang, X., Kumar, J., Tripathy, S.K., and Sandman, D.J., Chem. Mater., 1997 (accepted).Google Scholar
2. Eckert, H., Yesinowski, J.P., Sandman, D.J., and Velazquez, C.S., J. Am. Chem. Soc., 109, 761 (1987).Google Scholar
3. Sandman, D.J., Elman, B.S., Hamill, G.P., Hefter, J., and Velazquez, C.S., in Crystallographically Ordered Polymers, edited by Sandman, D.J. (American Chemical Society Symposium Series, 337, 1987), pp. 118127.Google Scholar
4. Hankin, S.H.W., Sandman, D.J., in Structure-Property Relations in Polymers, edited by Urban, M.W. and Craver, C.D. (American Chemical Society Advances in Chemistry Series, 236, 1993), pp243262.Google Scholar
5. Batchelder, D.N. and Bloor, D., in Advances in Infrared and Raman Spectroscopy, edited by Clark, R.J.H. and Hester, R.E. (Wiley, New York, 11, 1984), pp. 122209.Google Scholar
6. Orchard, B.J. and Tripathy, S.K., Macromolecules, 19, 1844 (1986).Google Scholar
7. Eckhardt, H., Boudreaux, D.S., and Chance, R.R., J. Chem. Phys., 85, 4116 (1986).Google Scholar
8. Foley, J.L. and Sandman, D.J., presented at the 1996 MRS Fall meeting, Boston, MA, 1996 (unpublished).Google Scholar
9. Masse, C.E., Kamath, M., Kodali, N.B., Kim, W.H., Kumar, J., and Tripathy, S.K., Macromolecules 26, 5954 (1993).Google Scholar
10. Kodali, N.B., Kim, W.H., Kumar, J., Tripathy, S.K., and Talwar, S.S., Macromolecules, 27, 6612 (1994).Google Scholar
11. Sohn, J.E., Garito, A.F., Desai, K.N., and Kuzyk, M., Makromol. Chem., 180, 2795 (1979).Google Scholar
12. Garito, A.F. and Singer, K.D., Laser Focus (1982), pp 59–64.Google Scholar
13. Paley, M.S., Frazier, D.O., Abdeldeyem, H., Armstrong, S., McManus, S.P., J. Am. Chem. Soc., 117, 4775 (1995).Google Scholar
14. Paley, M.S., Frazier, D.O., McManus, S.P., Zutaut, S.E., and Sanghadasa, M., Chem. Mater., 5, 1641 (1993).Google Scholar
15. Masse, C.E., wiede, K. Vander, Kim, W.H., Jiang, X.L., Kumar, J., and Tripathy, S.K., Chem. Mater., 7, 904 (1995).Google Scholar
16. Zemach, K.D. and Rubner, M.F., in Electrical, Optical, and Magnetic Properties of Organic Solid State Materials, edited by Garito, A.F., Jen, A.K.-Y., Lee, C.Y.-C. and Dalton, L.R. (Mater. Res. Soc. Proc. 328, Boston, MA, 1994) pp. 763768.Google Scholar
17. Sandman, D.J., Shivshankar, V., Stark, J.C., Benfaremo, N., Tsai, Z.-H., Sung, C., Tripathy, S.K., and Kumar, J., Proc. ACS Div. Polym. Mater.: Sci. and Eng., 75, 171 (1996).Google Scholar
18. Kim, W.H., Kodali, N.B., Kumar, J., and Tripathy, S.K., Macromolecules, 27, 1819 (1994).Google Scholar
19. Tripathy, S.K., Kim, W.H., Bihari, B., Moody, R., Kumar, J., Synthetic Metals, 71, 1675 (1995).Google Scholar
20. Tripathy, S.K., Kim, W.H., Jiang, X., and Kumar, J., Nonlinear Optics, 15, 111 (1996).Google Scholar
21. Cheong, D.W., Kim, W.H., Samuelson, L.A., Kumar, J., and Tripathy, S.K., Macromolecules, 29, 1416 (1996).Google Scholar
22. Patel, G.N., Preziosi, A.F., and Bhattacharjee, H.R., J. Polym. Sci., 71, 247 (1984).Google Scholar
23. Baur, J.W., Besson, P., O'Connor, S.A., and Rubner, M.F., in Electrical, Optical, and Magnetic Properties of Organic Solid State Materials III, edited by Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R., Rubner, M.F., Wnek, G.E., and Chiang, Y. (Mater. Res. Soc. Proc. 413, Boston, MA, 1996) pp. 583588.Google Scholar
24. McCusick, B.C., Heckert, R.E., Cairns, T.L., Coffman, D.D., and Mower, H.F., J. Am. Chem. Soc., 80, 2806 (1958).Google Scholar
25. Wang, X., Chen, J.I., Marturunkakul, S., Li, L., Kumar, J., and Tripathy, S.K., Chem. Mater., 9, 45 (1997).Google Scholar
26. Katz, H.E., Singer, K.D., Sohn, J.E., Dirk, C.W., King, L.A., Gordon, H.M., J. Am. Chem. Soc., 109, 6561 (1987).Google Scholar
27. Rao, V.P., Jen, A.K.-Y., Wong, K.Y., and Drost, K.J., J. Chem. Soc., Chem. Commun., 1118 (1993).Google Scholar
28. Chance, R.R., Patel, G.N., and Witt, J.D., J. Chem. Phys., 71, 206 (1979).Google Scholar
29. Walters, G., Painter, P., Ika, P., and Frisch, H., Macromolecules, 19, 888 (1986).Google Scholar
30. Wang, X., Li, L., Chen, J.-I., Marturunkakul, S., Kumar, J., and Tripathy, S.K., Macromolecules, 30, 219 (1997).Google Scholar
31. Kim, D.Y., Tripathy, S.K., Li, L., Kumar, J., Appl. Phys. Lett., 66, 1166 (1995).Google Scholar
32. Kim, D.Y., Li, L., Jiang, X.L., Shivshankar, V., Kumar, J., and Tripathy, S.K., Macromolecules, 28, 8835 (1995).Google Scholar
33. Jiang, X.L., Li, L., Kumar, J., Kim, D.Y., Shivshankar, V., and Tripathy, S. K., Appl. Phys. Lett, 68, 2618 (1996).Google Scholar
34. Rochon, P., Batalla, E., and Natansohn, A., Appl. Phys. Lett., 66, 136 (1995).Google Scholar