Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T08:03:44.370Z Has data issue: false hasContentIssue false

Self-Assembly of a Water-Soluble Tricyclic Heterocycle into J-Type Rosette Nanotubes

Published online by Cambridge University Press:  01 February 2011

Gabor Borzsonyi
Affiliation:
National Institute for Nanotechnology, National Research Council (NINT-NRC) and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
Rachel L. Beingessner
Affiliation:
National Institute for Nanotechnology, National Research Council (NINT-NRC) and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
Takeshi Yamazaki
Affiliation:
National Institute for Nanotechnology, National Research Council (NINT-NRC) and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
Jae-Young Cho
Affiliation:
National Institute for Nanotechnology, National Research Council (NINT-NRC) and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
Andrew J. Myles
Affiliation:
National Institute for Nanotechnology, National Research Council (NINT-NRC) and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
Andriy Kovalenko
Affiliation:
National Institute for Nanotechnology, National Research Council (NINT-NRC) and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
Hicham Fenniri
Affiliation:
National Institute for Nanotechnology, National Research Council (NINT-NRC) and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
Get access

Abstract

The synthesis and self-assembly of a water-soluble, tricyclic, self-complementary heterocycle that features the hydrogen bond donor-acceptor arrays of both guanine (G) and cytosine (C) juxtaposed between a pyridine ring is presented. In solution, this tricycle, which has been termed xK1, self-assembles into Rosette Nanotubes (RNTs) that have an inner diameter of 1.4 nm. Unlike the RNTs formed from the bicyclic congener K1, we demonstrate that xK1 with its extended ð system, forms a J-type RNT assembly determined through UV-Vis, CD and fluorescence spectroscopy experiments. This observation brings the possibility of developing electrically conducting RNTs for applications in the areas of photovoltaics and molecular wires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mascal, M., Hext, N. M., Warmuth, R., Moore, M. H., and Turkenburg, J. P., Angew. Chem., Int. Ed. Engl. 35, 2204 (1996). (b) A. Marsh, M. Silvestri, and J.-M. Lehn, Chem. Commun. 1527 (1996). (c) H. Fenniri, P. Mathivanan, K. L. Vidale, D. M. Sherman, K. Hallenga, K. V. Wood, and J. G. Stowell, J. Am. Chem. Soc. 123, 3854 (2001).Google Scholar
2. Fenniri, H., Deng, B.-L., and Ribbe, A. E., J. Am. Chem. Soc. 124, 11064 (2002). (b) H. Fenniri, B.-L. Deng, A. E. Ribbe, K. Hallenga, J. Jacob, and P. Thiyagarajan, Proc. Natl. Acad. Sci. USA. 99, 6487 (2002). (c) J. G. Moralez, J. Raez, T. Yamazaki, R. K. Motkuri, A. Kovalenko, and H. Fenniri, J. Am. Chem. Soc. 127, 8307 (2005). (d) R. S. Johnson, T. Yamazaki, A. Kovalenko, and H. Fenniri, J. Am. Chem. Soc. 129, 5735 (2007). (e) R. L. Beingessner, B.-L. Deng, P. E. Fanwick, and H. Fenniri, J. Org. Chem. 73, 931 (2008). (f) G. Tikhomirov, M. Oderinde, D. Makeiff, A. Mansouri, W. Lu, F. R. Heirtzler, D. Y. Kwok, and H. Fenniri, J. Org. Chem. 73, 4248 (2008).Google Scholar
3. Borzsonyi, G., Johnson, R. S., Myles, A. J., Cho, J.-Y., Yamazaki, T., Beingessner, R. L., Kovalenko, A., and Fenniri, H., Chem. Commun. 46, 6527 (2010).Google Scholar
4. Borzsonyi, G., Beingessner, R. L., Yamazaki, T., Cho, J.-Y., Myles, A. J., Malac, M., Egerton, R., Kawasaki, M., Ishizuka, K., Kovalenko, A., and Fenniri, H., J. Am. Chem. Soc. 132, 15136 (2010).Google Scholar
5. Lin, H., Camacho, R., Tian, Y., Kaiser, T. E., Würthner, F., and Scheblykin, I. G., Nano Lett. 10, 620 (2010). (b) W. Jin, Y. Yamamoto, T. Fukushima, N. Ishii, J. Kim, K. Kato, M. Takata, T. Aida, J. Am. Chem. Soc. 130, 9434 (2008). (c) K.-Y. Law, Chem. Rev. 93, 449 (1993).Google Scholar
6. Tischler, J. R., Bradley, M. S., Zhang, Q., Atay, T., Nurmikko, A., and Bulovic, V., Org. Electron. 8, 94 (2007). (b) B. J. Walker, G. P. Nair, L. F. Marshall, V. Bulovic, and M. G. Bawendi, J. Am. Chem. Soc. 131, 9624 (2009).Google Scholar
7. James, T. H., Ed. “The Theory of the Photographic Process” (Macmillan, 1977).Google Scholar
8. Sayama, K., Tsukagoshi, S., Mori, T., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S., and Arakawa, H., Sol Energy Mater. Sol. Cells 80, 47 (2003). (b) M. Kawasaki, and S. Aoyama, Chem. Commun. 988 (2004). (c) A. R. Tameev, A. Vannikov, and H. F. M. Schoo, Thin Solid Films 451/452, 109 (2004). (d) X.-F. Wang, O. Kitao, H. Zhou, H. Tamiaki, and S. Sasaki, J. Phys. Chem. C 113, 7954 (2009).Google Scholar
9. Beck, G., Ger. Offen. 3643456 (1988).Google Scholar
10. Kovalenko, A., “Three-Dimensional RISM Theory for Molecular Liquids and Solid-Liquid Interfaces," Molecular Theory of Solvation, ed. Hirata, F. (Kluwer Academic Publishers, 2003) pp. 169276. (b) A. Kovalenko, and F. Hirata, J. Chem. Phys. 112, 10391–10402 and 10403-10417 (2000).Google Scholar
11. Kim, O.-K., Je, J., Jernigan, G., Buckley, L., and Whitten, D., J. Am. Chem. Soc. 128, 510 (2006). (b) C. Nuckolls, T. J. Katz, L. Castellanos, J. Am. Chem. Soc. 118, 3767 (1996). (c) H. von Berlepsch, S. Kirstein, and C. Böttcher, J. Phys. Chem. B. 107, 9646 (2003).Google Scholar
12. Berova, N., Di Bari, L., and Pescitelli, G., Chem. Soc. Rev. 36, 914 (2007).Google Scholar
13. Chan, J. M. W., Tischler, J. R., Kooi, S. E., Bulovic, V., and Swager, T. M., J. Am. Chem. Soc. 131, 5659 (2009).Google Scholar