Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T11:20:46.463Z Has data issue: false hasContentIssue false

Silicon Melts During Pulsed Ruby Laser Annealing

Published online by Cambridge University Press:  15 February 2011

B Stritzker
Affiliation:
Institut füir Festkörperforschung, KFA Jüilich,
A Pospieszczyk
Affiliation:
Institut für Plasmaphysik, Association Euratom–KFA, KFA Jtllich,D–5170 Jülich, West Germany
Get access

Abstract

The lattice temperature of silicon was measured during pulsed ruby laser annealing (-20 ns pulse, spot diameter ≥ 5 mm) using a classical time of flight method to determine the velocity distribution of Si atoms evaporated from the hot surface. The maximum of this Maxwell type distribution was used to calculate the temperature of the Si surface. The resulting lattice temperatures vary between 1200 and 2500 K for energy densities between 1.0 and 2.0 J/cm2 , i.e., Si is molten for energy densities ≥ 1.4 J/cm2 . This result clearly supports the strictly thermal annealing model [1] and contradicts the non-thermal-equilibrium model [2] as well as Raman measurements [3].

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, J. C., Wood, R. F. and Pronko, P. P. Appl. Phys. Lett. 35, 455 (1978) andGoogle Scholar
Wood, R. F. and Giles, G. E., Phys. Rev. B 23, 2923 (1981).Google Scholar
2. Van Vechten, J. A. p. 53 in Laser and Electron Beam Processing of Materials, ed. by White, C. W. and Peercy, P. S., Academic Press, New York, 1980.Google Scholar
3. Lo, H. W. and Compaan, A. Phys. Rev. Lett. 44,1604 (1980), andGoogle Scholar
Appl. Phys. Lett. 38, 179 (1981).CrossRefGoogle Scholar
4. Van Vechten, J. A. and Compaan, A. D. Solid State Commun. 39, 867 (1981).Google Scholar
5. Aydinli, A., Lo, H. W, Lee, M. C and Compaan, A. Phys. Rev. Lett. 46, 1640 (1981).CrossRefGoogle Scholar
6. Stritzker, B., Pospieszczyk, A. and Tagle, J. A. Phys. Rev. Lett. 47, 356 (1981).Google Scholar
7. Pospieszczyk, A., Bogen, P., Hartwig, H. and Lie, Y. T., Nucl, J. Mater. 93/94, 368 (1980).Google Scholar
8. Zehner, D. M, White, C. W and Ownby, G. W. Appl. Phys. Lett. 37, 456 (1980).Google Scholar
9. Peugnet, C., J. Appl. Phys. 48, 3206 (1977).CrossRefGoogle Scholar