Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-15T06:07:53.248Z Has data issue: false hasContentIssue false

Silicon-Hydrogen Bonds in Boron and Phosphorous Doped Polycrystalline Silicon Thin Films

Published online by Cambridge University Press:  21 March 2011

R. Saleh
Affiliation:
Jurusan Fisika, Fakultas MIPA, Universitas Indonesia, 16424 Depok, Indonesia
N. H. Nickel
Affiliation:
Hahn-Meitner-Institut Berlin, Kekuléstr. 5, D-12489 Berlin, Germany
Get access

Abstract

Hydrogen bonding in laser crystallized boron and phosphorous doped polycrystalline silicon is investigated using Raman spectroscopy and hydrogen effusion measurements. During laser crystallization the intensity of the local vibration modes near 2000 and 2100 cm−1 decreases. The intensity of vibration mode at 2000 cm−1 decreases faster than the one at 2100 cm−1. From H effusion measurements, the hydrogen density-of-states (H DOS) distribution is derived. For undoped amorphous silicon the H DOS exhibits two prominent peaks at hydrogen binding energies of E– μH = –1.1 and –1.5 eV. In B doped a-Si:H the peak at –1.1 eV is less pronounced while in P doped a-Si:H the H binding energy increases by about 0.1 eV. In all samples laser crystallization causes an increase of the H binding energy by about 0.2 – 0.3 eV. However, the peaks in the H DOS observed in B-doped samples are preserved during laser crystallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lengsfeld, P., Nickel, N. H., in Nickel, N.H. (Ed), Laser Crystallization of Silicon, Academic Press, Amsterdam, 2003, p. 119.Google Scholar
[2] Mei, P., Boyce, J. B., Hack, M., Lujan, R. A., Johnson, R. I., Anderson, G. B., Fork, D. K., Ready, S. E., Appl. Phys. Lett. 64, 1132 (1994).Google Scholar
[3] Lengsfeld, P., Nickel, N. H., Fuhs, W., Appl. Phys. Lett. 76, 1680 (2000).Google Scholar
[4] Lengsfeld, P., Nickel, N. H., Fuhs, W., J. Non-Cryst. Solid 266–269, 659 (2000).Google Scholar
[5] Nickel, N. H., Lengsfeld, P., and Sieber, I., Phys. Rev. B 61, 15558 (2000).Google Scholar
[6] Jackson, W. B., Franz, A., Jin, H.–C., Abelson, J. R., Gland, J. L., J. Non-Cryst. Solids 227–230, 143 (1998).Google Scholar
[7] Beyer, W., in Hydrogen in Semiconductor II, Vol61, Editor Nickel, N.H., Academic Press (San Diego 1999) p. 165 Google Scholar
[8] Jackson, W. B., Zhang, S. B., in Fritsche, H. (Ed.), Transport, Correlation and Structural Defects, World Scientific, Singapore, 1990, p.63 Google Scholar
[9] Chang, K.J., Chadi, D.J., Phys. Rev. Lett. 62, 937 (1989)Google Scholar
[10] Nickel, N. H., Brendel, K., Phys. Rev. B 68,193303 (2003).Google Scholar
[11] Nickel, N. H., Brendel, K., Appl. Phys. Lett 82, 30029 (2003).Google Scholar
[12] Nickel, N. H., Brendel, K., Solid State Phenomena 93, 191 (2003).Google Scholar
[13] Walle, C. G. Van de, Phys. Rev. B 49, 4579(1994).Google Scholar