Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-16T01:51:46.620Z Has data issue: false hasContentIssue false

Simulation of the Nucleation and Growth of Si Grains Inside Au Thin Films

Published online by Cambridge University Press:  15 February 2011

A. A. Pasa
Affiliation:
Departamento de Fisica - CFM - UFSC, 88.040 - 900 - Florianópolis, SC, Brazil.
M. Neugebauer
Affiliation:
IPE - Universität Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart, FRG.
W. Losch
Affiliation:
PEMM/COPPE/UFRJ, C.P. 68505, 21945-970 Rio de Janeiro, RJ, Brazil.
G. H. Bauer
Affiliation:
Fakultàt Physik, Carl von Ossietzky Universität, D-2900 Oldenburg, FRG.
Get access

Abstract

The Si crystallization process induced by the presence of a gold thin film was computer simulated using a random resistor network and concepts of the percolation theory. The model considers initially a pure Au resistor network. The random appearance of Si nuclei corresponds to a high local variation of the resistance value. The crystallization process was simulated step-by-step and parameters as nucleation rate and growth rate were tested. Considering an interface limited reaction process, the simulated results are in good agreement with experimentally obtained in-situ electrical measurements and scanning electron microscopy micrographies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Herd, S. R., Chaudhari, P., and Brodsky, M. H., J. Non-Cryst. Solids 11, 309 (1972).Google Scholar
2 Thompson, M. J., Nemanich, R. J., and Tsai, C. C., Surf. Sci. 132, 250 (1983).Google Scholar
3 Pasa, A. A., PhD Thesis, Federal University of Rio de Janeiro, 1993.Google Scholar
4 Pasa, A. A., Achete, C. A., Losch, W. and Bauer, G. H. in Phase Transformations in Thin Films - Transformations and Kinetics,edited by Atzmon, M., Lindsay, A., Harper, J. M. F. and Libera, M. R. (Mater. Res. Soc. Proc. 315, San Francisco, CA, 1993), pp. 105110.Google Scholar
5 Servi, I. S. and Turnbull, D., Acta Met., 14, 161 (1966).Google Scholar
6 Allen, L. H., Mayer, J. W., Tu, K. N., and Feldman, L. C., Phys. Rev. B 41, 8213 (1990).Google Scholar
7 Pasa, A. A., Schubert, M. B., Abel, C. -D., Beyer, W., Losch, W. and Bauer, G. H. in Amorphous Silicon Technology,edited by Thompson, M. J., Hamakawa, Y., LeComber, P. G., Madan, A. and Schiff, E. (Mater. Res. Soc. Proc. 258, San Francisco, CA, 1992), pp. 129134.Google Scholar
8 Zallen, R., The Physics of Amorphous Solids, (John Wiley & Sons, New York, 1983), p. 135.Google Scholar
9 Derrida, B., Zabolitzky, J. G., Vannimenus, J. and Stauffer, D., J. Sat. Phys. 36, 31 (1984).Google Scholar
10 Avrami, M., J. Chem. Phys. 9, 177 (1941).Google Scholar