Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T04:29:21.583Z Has data issue: false hasContentIssue false

A Single-Step Route Towards Large-Scale Deposition of Nanocomposite Thin Films Using Preformed Gold Nanoparticles

Published online by Cambridge University Press:  31 January 2011

Weiliang Wang
Affiliation:
weiliang.wang@eng.ox.ac.uk, Oxford University, Engineering Department, Oxford, United Kingdom
Kevin Cassar
Affiliation:
cassak@matthey.com, Johnson Matthey Technology Centre, Reading, United Kingdom
Steve Sheard
Affiliation:
steve.sheard@eng.ox.ac.uk, Oxford University, Engineering, Oxford, United Kingdom
Peter Dobson
Affiliation:
peter.dobson@begbroke.ox.ac.uk, Oxford University, Engineering, Oxford, United Kingdom
Simon Hurst
Affiliation:
Simon.Hurst@pilkington.com, Pilkington Technology Centre, Lathom, United Kingdom
Peter Bishop
Affiliation:
bishopt@matthey.com, Johnson Matthey Technology Centre, Reading, United Kingdom
Ivan Parkin
Affiliation:
i.p.parkin@ucl.ac.uk, University College London, Chemistry, London, United Kingdom
Get access

Abstract

We have been developing noble metal nanoparticles and nanocomposites for large scale application to glass surfaces. The novel functionality of the nanocomposites is attributed to the properties of both the metal nanoparticles and host matrix. Here a single-process route to nanocomposite thin films by spray deposition technique has been investigated. Preformed gold nanoparticles have been incorporated into several different transition metal oxides (TiO2, SnO2, ZnO). The nanocomposite films showed intense coloration due to the surface plasmon resonance effects of gold nanoparticles embedded in the host matrix. The gold nanoparticles were found well embedded into the host metal oxides homogeneously. This film deposition method can easily be scaled up and is compatible with current industrial on-line processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Palgrave, R. Parkin, I. P. J. Am. Chem. Soc. 128, 15871597 (2006).Google Scholar
2 Xu, X., Stevens, M. Cortie, M. B. Chem. Mater. 16, 2259 (2004).Google Scholar
3 Buso, D. Pacifico, J. Martucci, A. and Mulvaney, P. Adv. Funct. Mater. 17, 347 (2007).Google Scholar
4 Armelao, L. Barreca, D. Bottaro, G. Gasparotto, A. Gross, S. Maragno, C. Tondello, E. Coord. Chem. Rev. 250, 1294 (2006).Google Scholar
5 Ung, T. Liz-Marzan, L. M., Mulvaney, P. Colloids and Surfaces. A-Physicochem. Eng. Aspects 202, 119 (2002).Google Scholar
6 Lahiri, D. Subramanian, V. Shibata, T. Wolf, E. E. Bunker, B. A. Kamat, P. V. J. Appl. Phys. 93, 2575 (2003).Google Scholar
7 Ashraf, S. Blackman, C. S. Hyett, G. Parkin, I. P. J. Mater. Chem. 16, 3575 (2006).Google Scholar
8 He, T. Ma, Y. Cao, Y. Yang, W. J. Yao Phys. Chem. Chem. Phys. 4, 1637 (2002).Google Scholar
9 Medda, S. K. De, S. and De, G. J. Mater. Chem. 15, 32783284 (2005).Google Scholar
10 Walters, G. and Parkin, I. P. J. Mater. Chem. 19, 574 (2009)Google Scholar
11 Zhao, X. Hinchliffe, C. Johnston, C. Dobson, P. J. and Grant, P. S. Mater. Sci. Eng. B, 151 140 (2008).Google Scholar
12 Deki, S. Aoi, Y. Yanagimoto, H. Ishii, K. Akamatsu, K. Mizuhata, M. and Kajinami, A. J. Mater. Chem, 6, 1879 (1996).Google Scholar
13 Lee, M.. Chae, L. and Lee, K. C. Nanostructured Materials 11, 195 (1999).Google Scholar