Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-08T22:10:20.122Z Has data issue: false hasContentIssue false

Sol-Gel Process form Heterometallic Alkoxides to Incorporate Alkaline- and Rare Earths in Alumina for automotive Applications

Published online by Cambridge University Press:  10 February 2011

C. K. Narula*
Affiliation:
Department of Chemistry, Ford Motor Company, P.O. Box 2053, MD 3083, Dearborn, MI 48121
Get access

Abstract

The high cost of materials prepared by sol-gel processing and the loss of useful surface properties at elevated temperature has prevented the application of sol-gel processed materials in automotive exhaust reduction catalyst formulations. In this report, we briefly describe the important developments needed in the next generation automotive catalysts and the role of sol-gel processed materials. We will also discuss the application of heterometallic alkoxides as sol-gel precursors to achieve the molecular distribution of lanthanides and alkaline earths in alumina matrices needed for the stabilization of alumina based materials at elevated temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heck, R.M. and Farrauto, R.J., Catalytic Air Pollution Control: Commercial Technology, Van Nostrand Reinhold, New York, 1995.Google Scholar
2. Gandhi, H.S. and Narula, C.K., Reaction Kinetics & Catalysis, (in press).Google Scholar
3. Narula, C.K., Allison, J.E., Bauer, D.R., Gandhi, H.S., Chem. Mater. (in press).Google Scholar
4. Brinker, C.J. and Scherer, G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York, 1990.Google Scholar
4. Narula, C.K., Watkins, W., Shelef, M., US Pat. 5,210,062, May 11, 1993 Google Scholar
5. Narula, C.K., Visser, J.H., Adamczyk, A.A., US Pat. 5, 480,622, Jan.2, 1996.Google Scholar
6. Narula, C.K., Jen, H., Gandhi, H.S., US Patent application 08/311,298 filed Sept 23, 1994.Google Scholar
7. Mehrotra, R.C. and Agrawal, M.M., J. Chem. Soc., Chem. Comm., 469 (1968). R.C. Mehrotra, M.M. Agrawal, A. Mehrotra, Synth. Inorg. Metal.-Org. Chem., 3, 181 (1973). R.C. Mehrotra, M.M. Agrawal, A. Mehrotra, Synth. Inorg. Metal-Org. Chem., 3, 407, (1973).Google Scholar
8. Mehrotra, R.C., Goel, S., Goel, A.B., King, R.G., Nainan, K.C., Inorg. Chim. Acta, 29, 131, (1978).Google Scholar
9. Mehrotra, R.C., Chemtracts, 2, 389, (1990).Google Scholar
10. Kuhlman, R., Vaarstra, B.A., Streib, W.E., Hufman, J.C., Caulton, K.G., Inorg. Chem., 32, 1272, 1993.Google Scholar
11. Campion, J-F., Payne, D.A., Chae, H.K., Maurin, J.K., Wilson, S.R., Inorg. Chem., 30, 3245, 1991.Google Scholar
12. Hubert-Pfalzgraf, L.G., Polyhedron, 13, 1118, (1994).Google Scholar
13. Jones, K., Davies, T.J., Emblem, H.G., Parkes, P., Mater. Res. Soc. Symp. Proc., 73, 111, (1986).Google Scholar
14. Rai, J., Mehrotra, R.C., J. Non-Cryst. Solids, 134, 23, (1991). J. Rai, R.C. Mehrotra, J. Non- Cryst. Solids, 152, 118, (1993).Google Scholar
15. Narula, C.K., US Patent 5,134,107, July 28, 1992.Google Scholar
16. Narula, C.K., Mater. Res. Soc. Symp. Proc., 271, 1992, 181.Google Scholar
17. Narula, C.K., Weber, W.H., Ying, J., Chem. Mater. (submitted).Google Scholar