Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-28T23:26:01.809Z Has data issue: false hasContentIssue false

Sol-Gel Process from Heterobimetallic Alkoxides to Incorporate Lanthanides in an Alumina Matrix

Published online by Cambridge University Press:  25 February 2011

Chaitanya K. Narula*
Affiliation:
Chemistry Department, Research Laboratory, Ford Motor Company, P. O. Box 2053, MD 3083, Dearborn, MI 48121
Get access

Abstract

Gels form on addition of seven or more moles of water diluted with i-PrOH to one mole of M[Al(O-i-Pr)4]3, M = La, Ce dissolved in i-PrOH. Thermal treatment of xerogels derived from La[AI(O-i-Pr)4]3 gives amorphous powders below 900°C. LaAIO3 crystallizes out at 900°C and residual alumina remains amorphous. CeO2 starts to separate out above 600°C from the xerogels prepared from Ce[M(O-i-Pr)4]3. Thermally induced structural changes in xerogels prepared from the mixtures of La[AI(O-i-Pr)4]3 and Ce[AI(0-i-Pr)4]3 in 1:1 or 1:3 ratio are different from those prepared from individual precursors. These xerogels remain amorphous below 700°C. Crystalline CeO2 forms on heating at 900°C but alumina remains amorphous. Sols are formed on hydrolysis of M[AI(0-/-Pr)4]3 in excess water and acidifying the reaction mixture with acetic acid. Sols can be converted to gels by slow evaporation of volatiles. This method is useful in preparing coatings.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Brinker, C. J. and Scherer, G. W., Sol-Gel Science. Academic Press, London, 1990.Google Scholar
[2] Sol-Gel Technology for Thin Films. Fibers, Preforms. Electronics, and Specialty Shapes. edited by Kline, L., (Noyes Publications, New Jersy, 1988).Google Scholar
[3] Jones, K., Davies, T. J., Emblem, H. G., and Parkes, P., Mater. Res. Soc. Symp. Proc, 73, 111 (1986).CrossRefGoogle Scholar
[4] Mehrotra, R. C., Mat. Res. Soc. Symp. Proc, 121, 81 (1988).CrossRefGoogle Scholar
Jain, R., Rai, A. K., and Mehrotra, R. C., J. Inorg. Chem. (China), 3, 96 (1987).Google Scholar
[5] Bradley, D. C., Mehrotra, R. C., Gaur, D. P., Metal Alkoxides (Academic Press, London, 1978).Google Scholar
Mehrotra, R. C. and Agrawal, M. M., J. Chem. Soc., Chem. Comm., 469 (1968).Google Scholar
Mehrotra, R. C., Agrawal, M. M., and Mehrotra, A., Syn. Inorg. Metal-Org. Chem., 3, 181 (1973).CrossRefGoogle Scholar
Mehrotra, R. C., Agrawal, M. M., and Mehrotra, A., Syn. Inorg. Metal-Org. Chem., 3, 407 (1973).CrossRefGoogle Scholar
[6] Leenars, A. F. M., Keizer, K., and Burggraaf, A. J., Separation with Inorganic Membranes. (Laboratory of Inorganic Science, Twente University of Technology, Enschede, The Netherlands).Google Scholar
Leenaars, A. F. M., Keizer, K., and Burggraaf, A. J., J. Membrane Sci., 24, 245 (1985).CrossRefGoogle Scholar
Leenaars, A. F. and Burggraaf, A.J., J. Membrane Sci., 24, 261 (1985).CrossRefGoogle Scholar
Leenaars, A. F. M., Keizer, K., and Burggraaf, A. J., Chemtech, 564 (1986).Google Scholar
[7] Narula, C. K., Watkins, W. L., and Shelef, M., unpublished results.Google Scholar
[8] Gandhi, H. S., Piken, A. G., Shelef, M., and Delosh, R. G., SAE Transactions, 85, 760201 (1976).CrossRefGoogle Scholar
[9] Miki, T., Ogawa, T., Haneda, M., Kakuta, N., Ueno, A., Tateishi, S., Matsura, S., and Sato, M., J. Phys. Chem., 94, 6464 (1990).CrossRefGoogle Scholar
[10] Watanabe, N., Yamashita, H., Akira, K., Kawagoe, H., and Matsuda, S., Jpn. Kokai Tokkyo Koho JP 63,175,642. CA 110, 64521 (1989).Google Scholar
[11] Mehrotra, R. C., Singh, A., and Tripathi, U. M., Chem. Rev., 91, 1287 (1991).CrossRefGoogle Scholar
[12] Mehrotra, R. C., Coord. Chem. Rev., 31, 67 (1980).CrossRefGoogle Scholar