Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-15T09:10:45.312Z Has data issue: false hasContentIssue false

Solid Solubilities of Pu, U, Hf and Gd in Candidate Ceramic Phases for Actinide Waste Immobilization

Published online by Cambridge University Press:  10 February 2011

E. R. Vance
Affiliation:
Materials Division, ANSTO, Menai, NSW 2234, Australia, erv@ansto.gov.au
M. L. Carter
Affiliation:
Materials Division, ANSTO, Menai, NSW 2234, Australia
B. D. Begg
Affiliation:
Materials Division, ANSTO, Menai, NSW 2234, Australia
R. A. Day
Affiliation:
Materials Division, ANSTO, Menai, NSW 2234, Australia
S. H. F. Leung
Affiliation:
Materials Division, ANSTO, Menai, NSW 2234, Australia
Get access

Abstract

Solid solubility limits of U, Pu, and the neutron absorbers Hf and Gd have been measured for zircon (ZrSiO4), monazite (CePO4), titanite (CaTiSiO5), perovskite (CaTiO3), apatite (Ca10(PO4)6O), in almost all cases where these limits were not known beforehand. The method used was to oversaturate the host phase with the dopant, using a nominated substitutional scheme, and then establish the dopant content of the host phase by microanalysis/scanning electron microscopy. Tetravalent U has limited solid solubilities in titanite, perovskite and apatite. X-ray absorption near-edge and diffuse reflectance spectroscopies were used to show that U was tetravalent in U-doped perovskite prepared in both argon and hydrogen-nitrogen atmospheres, with different charge compensating schemes. Tetravalent Pu has solubilities of 0.13 and 0.02 formula units (f.u.) in perovskite and titanite respectively. Trivalent Pu has a solubility of 0.05 f.u. in titanite. Pu3+ dominates tetravalent Pu in monazite fired in air at 1400°C. At least 0.5 and < 0.1 f.u. of Hf are soluble in titanite and monazite respectively.Hf solubility in apatite is estimated as < 0.1 f.u. Approximately 0.3 and < 0.1 f.u. of Gd are soluble in titanite and zircon respectively

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 McCarthy, G. J., Pepin, J. G. and Davis, D. D., in Scientific Basis for Nuclear Waste Management, Volume 2, edited by Northrup, C. J. M. (Plenum, New York and London, 1979) p. 297306.Google Scholar
2 Bjorklund, C. J., J. Amer. Chem. Soc., 79, p. 6347 (1958).Google Scholar
3 Begg, B. D., Hess, N. J., Weber, W. J., Conradson, S. D., Schweiger, M. J. and Ewing, R. C., J. Nucl. Mater., in press.Google Scholar
4 Keller, C., Nukleonik, 5, p. 41 (1963).Google Scholar
5 Dickson, F. J., Hawkins, K. D. and White, T.J., J. Solid State Chem., 82, p. 146 (1987).Google Scholar
6 Shoup, S. and Bamberger, C. E., in Scientific Basis for Nuclear Waste Management XIX, edited by Gray, W. J. and Triay, I. R. (Materials Research Society, Pittsburgh, PA, USA, 1997), p. 379–86.Google Scholar
7 Clinard, F. W. Jr, Hobbs, L. W., Land, C. C., Peterson, D. E., Rohr, D. L. and Roof, R. B., J. Nucl. Mater., 105, p. 248 (1982).Google Scholar
8 Vance, E. R. and Agrawal, D. K., Nucl. Chem. Waste Manage., 3, p. 229 (1982).Google Scholar
9 Weber, W. J., J. Amer. Ceram. Soc., 65, p. 544 (1982).Google Scholar
10 Vance, E. R. and Pillay, K. K. S., Rad. Effects, 62, p. 25 (1982).Google Scholar
11 Keller, C. and Walter, K. H., J. Inorg. Nucl. Chem., 27, p. 1247 (1965).Google Scholar
12 Begg, B. D., Vance, E. R. and Conradson, S. D., J. Alloys and Compounds, 271–3, p. 221 (1998).Google Scholar
13 Vance, E. R., Stewart, M. W. A., Day, R. A., Hart, K. P., Hambley, M. J. and Brownscombe, A., ANSTO Report R97m030 to Lawrence Livermore National Laboratory (1997).Google Scholar
14 McCarthy, G. J., Roy, R. and White, W. B., Mater. Res. Bull. 4, p. 251 (1969).Google Scholar
15 McCarthy, G. J., Nucl. Technol., 32, p. 92 (1977).Google Scholar
16 Vance, E. R., Day, R. A., Zhang, Z., Begg, B. D., Ball, C. J. and Blackford, M. G., J. Solid State Chem., 124, p.77 (1996).Google Scholar
17 Ouzegane, K., Fourcade, S., Kienast, J-R. and Javoy, M., Contr. Min. Petr., 98, p. 277 (1988).Google Scholar
18 Hughson, M. R. and Gupta, J. E. Sen, Amer. Mineral., 49, p. 937 (1964).Google Scholar
19 Ewing, R. C. and Haaker, R. F., J. Amer. Ceram. Soc., 64, p. C-149 (1981).Google Scholar
20 Spearing, D. R. and Huang, J. Y., J. Amer. Ceram. Soc., 81, p. 1964 (1998).Google Scholar