Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-17T07:16:10.874Z Has data issue: false hasContentIssue false

Solid State NMR Studies of Ionically Conductive Non-Oxide Chalcogenide Glasses

Published online by Cambridge University Press:  21 February 2011

Hellmut Eckert
Affiliation:
Department of Chemistry, University of California, Santa Barbara, Goleta, CA 93106
Zhengming Zhang
Affiliation:
Department of Chemistry, University of California, Santa Barbara, Goleta, CA 93106
J. H. Kennedy
Affiliation:
Department of Chemistry, University of California, Santa Barbara, Goleta, CA 93106
Get access

Abstract

The utility of 29Si, 31 p, and 6.7 Li MAS-NMR at 7.05 T to provide structural information in non-oxide chalcogenide glasses is discussed in connection with experimental results obtained on the systems Li2 S-SiS2, Li2 S-SiS2 -P2S5, and Li2 S-P2 S5-B2 S329Si MAS-NMR data indicate that the principles governing glass formation in these systems are fundamentally different from those applicable to stoichiometry-analog oxide glasses. 31p MAS-NMR can be used to identify microphase-separation in glasses containing two network former constituents. The use of the rare isotope 6 Li instead of 7 Li offers the advantage of significantly improved spectroscopic resolution, enabling the presentation of the first comprehensive lithium NMR chemical shift scale in the solid state.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Malugani, J. P. and Robert, G., Solid State Ionics 1, 519 (1980).CrossRefGoogle Scholar
2. Wada, H., Menetrier, M., Levasseur, A., and Hagenmuller, P., Mater. Res. Bull. 18, 189 (1983).CrossRefGoogle Scholar
3. Kennedy, J. H. and Zhang, Z., J. Electrochem. Soc. 135, 859 (1988).CrossRefGoogle Scholar
4. Muller-Warmuth, W. and Eckert, H., Phys. Rep. 88, 91 (1982).CrossRefGoogle Scholar
5. Kennedy, J. H. and Zhang, Z., Solid State Ionics, in press.Google Scholar
6. Eckert, H., Zhang, Z., and Kennedy, J. H., J. Noncryst. Solids, in pressGoogle Scholar
7. Smith, K. A., Kirkpatrick, R. J., Oldfield, E., and Henderson, D. M., Am. Mineral. 68, 1206 (1983).Google Scholar
8. Grimmer, A. R., Magi, M., Hahnert, M., Stade, H., Samoson, A., Wieker, W., and Lippmaa, E., Phys. Chem. Glasses 25, 105 (1984).Google Scholar
9. Dupree, R., Holland, D., McMillan, P. W., and Pettifer, R. F., J. Noncryst. Solids 68, 399 (1984).CrossRefGoogle Scholar
10. Schneider, E., Stebbins, J. F., and Pines, A., J. Noncryst. Solids 89, 371 (1987).CrossRefGoogle Scholar
11. Dupree, R. and Farnan, I. A., Meeting Abstract NMC4, Oxnard 1988.Google Scholar
12. Eckert, H., Liang, C. S., and Stucky, G. D., J. Phys. Chem., in press.Google Scholar
13. Prabhakar, S., Rao, K. J., and Rao, C. N. R., Chem. Phys. Lett. 139, 96 (1987). T. M. Duncan and D. C. Douglass, Chem. Phys. 87, 339 (1984).CrossRefGoogle Scholar
14. Dietzel, A., Z. Elektrochem. 48, 9 (1942).Google Scholar