Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-03T10:51:24.326Z Has data issue: false hasContentIssue false

Solubility Constraint: An Important Consideration in Safety Assessment of Nuclear Waste Disposal

Published online by Cambridge University Press:  25 February 2011

Dhanpat Rai
Affiliation:
Pacific Northwest Laboratory, Richland, Washington 99352
Jack L. Ryan
Affiliation:
Pacific Northwest Laboratory, Richland, Washington 99352
Get access

Abstract

Solubilities of key solid compounds that are either present in the waste form or can readily precipitate from waste package leachates under repository conditions can be used to set maximum limits on radionuclide concentrations expected in groundwater. This is because the solubility limited concentrations are independent of the release scenarios, hydrologic transport characteristics, and adsorption/desorption reactions. Some of the important factors that control solubilities are pH, pe, type of solid phase, and nature of complexing ligands in the ground waters. Most of the above factors are affected by radiolysis due to the inherent radiation field of the waste form. Experimental results pertaining to the solubilities of selected Am, U, Np, and Pu compounds and the effects of radiolysis are discussed. These results show that: 1) at expected repository pH and reducing conditions, solubility controlled concentrations of several actinides are low and near acceptable limits, 2) the redox conditions at the waste form-water interface may be very oxidizing due to radiolyticeffects, despite the fact that normal repository conditions are assumed to be reducing, 3) additional data on solubility limits and key thermodynamic parameters are needed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baes, C. F. Jr. and Mesmer, R. E., The Hydrolysis of Cations. (Wiley, New York, 1976).Google Scholar
2. Langmuir, D., Geochimica Cosmochim. Acta, 42, 547 (1978).CrossRefGoogle Scholar
3. Allard, B., Kipatsi, H., and Lilijenzin, J. O., J. Inorg. Nucl. Chem., 42, 1015 (1980).CrossRefGoogle Scholar
4. Lemire, R. J. and Tremaine, P. R., Chem., J. Eng. Data, 25, 361 (1980).CrossRefGoogle Scholar
5. Barnum, D. W., Inorg. Chem., 22, 2297 (1983).CrossRefGoogle Scholar
6. Allard, B. in: Actinides in Perspective, Edelstein, N., ed. (Pergamon Press, New York, 1982) pp. 553580.CrossRefGoogle Scholar
7. Ogard, A. E. and Duffy, C. J., Nucl. Chem. Waste Management, 2, 169, (1981) andCrossRefGoogle Scholar
7a. Duffy, C. J. and Ogard, A. E., Uraninite Immobilization and Nuclear Waste, LA-9199-MS, Los Alamos National Laboratory, Los Alamos, NM (1982).CrossRefGoogle Scholar
8. Krupka, K. M., Jenne, E. A., and Deutsch, W. J., Validation of the WATEQ4 Geochemical Model for Uranium, PNL-4333, Pacific Northwest Laboratory, Richland, Washington (1983).CrossRefGoogle Scholar
9. Allard, B., Kipatsi, H., and Torstenfelt., B. Sorption av Langlivade Radionuklider: Lera Och Berg Del 2. KBS-98, Karnbranslesakerhet, Stockholm (1978).Google Scholar
10. Phillips, S. L., Hydrolysis and Formation Constants at 25° C, LBL-14313, Lawrence Berkeley Laboratory, Berkeley, California (1982).Google Scholar
11. Shalinets, A. B., and Stepanov, A. V.. Radiokhimiya 14: 280283 (1972).Google Scholar
12. Rai, D., Strickert, R. G., Moore, D. A., and Ryan, J. L., Radiochim. Acta (in press).Google Scholar
13. Rai, D., Strickert, R. G., Moore, D. A., and Serne, R. J., Geochim. Cosmochim. Acta., 45, 2257 (1981).CrossRefGoogle Scholar
14. Rich, R. A., Holland, H. D., and Petersen, U., Hydrothermal Uranium Deposits (Elsevier, New York, 1977), and references therein.Google Scholar
15. Gayer, K. M. and Leider, H., Can. J. Chem., 35, 5 (1957).CrossRefGoogle Scholar
16. Ryan, J. L. and Rai, D., Polyhedron, 2, 947 (1983).CrossRefGoogle Scholar
17. Rai, D., Strickert, R. G., and McVay, G. L., Nucl. Tech. 58, 69 (1982).CrossRefGoogle Scholar
18. Rai, D. Radiochim. Acta, (in press).Google Scholar
19. Rai, D., Serne, R. J., and Swanson, J. L., J. Environ. Qual., 9, 417 (1980).CrossRefGoogle Scholar
20. Rai, D., Serne, R. J., and Moore, D. A., Soil Science Soc. Am. J., 44, 490 (1980).CrossRefGoogle Scholar
21. Rai, D. and Swanson, J. L., Nucl. Technol. 54, 107 (1981).CrossRefGoogle Scholar
22. Kasha, M. in: The Transuranium Elements, Part I, Seaborg, G. T., Katz, J. J., and Manning, W. M., Eds. (McGraw-Hill, New York, 1949), pp. 295334.Google Scholar
23. Latimer, W. M., Oxidation Potentials, (Prentice-Hall, New York, 1952) p. 307.Google Scholar
24. Perez-Bustamente, J. A., Radiochim. Acta, 4, 67 (1965).CrossRefGoogle Scholar
25. Rai, D., Strickert, R. G., and Ryan, J. L., Inorg. Nucl. Chem. Letters, 16, 551 (1980).CrossRefGoogle Scholar
26. Rai, D. and Ryan, J. L., Radiochim. Acta, 30, 213 (1982).CrossRefGoogle Scholar