Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-11T07:25:12.174Z Has data issue: false hasContentIssue false

Solution Processed Self-Assembled Monolayer Gate Dielectrics for Low-Voltage Organic Transistors

Published online by Cambridge University Press:  01 February 2011

James Ball
Affiliation:
j.ball07@imperial.ac.uk, Imperial College London, Department of Physics, London, United Kingdom
Paul H Wöbkenberg
Affiliation:
paul.wobkenberg@imperial.ac.uk, Imperial College London, Department of Physics, London, United Kingdom
Florian Colléaux
Affiliation:
florian.colleaux@imperial.ac.uk, Imperial College London, Department of Physics, London, United Kingdom
Floris B Kooistra
Affiliation:
floriskooistra@wanadoo.nl, Zernike Institute for Advanced Materials, Groningen, Netherlands
Jan C Hummelen
Affiliation:
j.c.hummelen@rug.nl, Zernike Institute for Advanced Materials, Groningen, Netherlands
Donal D. C. Bradley
Affiliation:
d.bradley@imperial.ac.uk, Imperial College London, Department of Physics, London, United Kingdom
Thomas D Anthopoulos
Affiliation:
thomas.anthopoulos@imperial.ac.uk, Imperial College London, Department of Physics, London, United Kingdom
Get access

Abstract

Low-voltage organic transistors are sought for implementation in high volume low-power portable electronics of the future. Here we assess the suitability of three phosphonic acid based self-assembling molecules for use as ultra-thin gate dielectrics in low-voltage solution processable organic field-effect transistors. In particular, monolayers of phosphonohexadecanoic acid in metal-monolayer-metal type sandwich devices are shown to exhibit low leakage currents and high geometrical capacitance comparable to previously demonstrated self-assembled monolayer (SAM) type dielectrics but with a higher surface energy. The improved surface energy characteristics enable processing of a wider range of organic semiconductors from solution. Transistors based on a number of solution-processed organic semiconductors with operating voltages below 2 V are also demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Klauk, H., Zschieschang, U., Pflaum, J. and Halik, M., Nature 445, 745 (2007).Google Scholar
2. Wöbkenberg, P. H., Ball, J., Kooistra, F. B., Hummelen, J. C., de Leeuw, D. M., Bradley, D. D. C. and Anthopoulos, T. D., Appl. Phys. Lett. 93, 013303 (2008)Google Scholar
3. Sirringhaus, H. and Ando, M., MRS Bulletin 33, 676 (2008)Google Scholar
4. Zhou, Lisong, Wanga, A., Wu, S.-C., Sun, J., Park, S. and Jackson, T. N., Appl. Phys. Lett. 88, 083502 (2006)Google Scholar
5. Collet, J., Tharaud, O., Chapoton, A. and Vuillaume, D., Appl. Phys. Lett. 76 (14), 19411943 (2000)Google Scholar
6. Park, Y. D., Kim, D. H., Jang, Y., Hwang, M., Lim, J. A. and Choa, K., Appl. Phys. Lett. 87, 243509 (2005)Google Scholar
7. Ball, J., Wöbkenberg, P. H., Kooistra, F. B., Hummelen, J. C., de Leeuw, D. M., Bradley, D. D. C. and Anthopoulos, T. D., Submitted (2008)Google Scholar
8. Wöbkenberg, P. H., Ball, J., Bradley, D. D. C., Anthopoulos, T. D., Kooistra, F. B., Hummelen, J. C. and de Leeuw, D. M., Appl. Phys. Lett. 92, 143310 (2008)Google Scholar
9. Kwok, D. Y. and Neumann, A. W., Adv. Colloid Interface Sci. 81 (3), 167249 (1999)Google Scholar