Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-08T21:17:23.880Z Has data issue: false hasContentIssue false

Stable Adsorption of Lipid Vesicles on Modified Gold Surfaces

Published online by Cambridge University Press:  15 March 2011

Stavroula Sofou
Affiliation:
Department of Chemical Engineering, Columbia University, 500 W. 120th St. New York NY 10027
James L. Thomas
Affiliation:
Department of Chemical Engineering, Columbia University, 500 W. 120th St. New York NY 10027
Get access

Abstract

The use of vesicles as amplifiers in biosensors is receiving increasing attention. Because vesicles may entrap thousands of reporter molecules, strong signal amplification can be obtained if a small number of analytes can simply release the entrapped reporters. Surface immobilization of vesicles with sensitivities for different analytes could then provide for simultaneous amplified detection of a number of analytes on a single chip. To achieve this goal, vesicles must first be stably adsorbed to a surface, without rupture. We have varied vesicle composition and charge (phosphatidylcholine, phosphatidylcholine-phosphatidic acid at 4.6 molar ratio) and solution ionic strength, to study the adsorption of fluorescent vesicles to glass, gold, and gold modified with chemisorbed acetylcysteine. Surfaces were characterized with angle-resolved X-ray photoelectron spectroscopy (ARXPS), and vesicle integrity and behavior was studied using entrapped and lipophilic fluorescent markers either together or in separate experiments. Diffusion coefficients (by photobleaching recovery) and vesicle fusion (by energy transfer) were monitored using confocal fluorescence microscopy. Finally, as a “proof of principle”, release of a self-quenching entrapped reporter dye (calcein) by the detergent Triton X-100 was followed in real time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Groves, J. T., Ulman, N., Cremer, P.S., Boxer, S.G. Langmuir 1998, 14, 33473350.Google Scholar
2) Evans, S. D., Sharma, R., Ulman, A. Langmuir 1991, 7, 156161.Google Scholar
3) Whitesides, G. M., Laibinis, P.E. Langmuir 1990, 6, 8796.Google Scholar
4) Dodero, G., De Michieli, L., Cavalleri, O., Rolandi, R., Olivery, L., Dacca, A., Parodi, R. Colloids and Surfaces A: Physicochem. Eng. Aspects 2000, 175, 121128.Google Scholar
5) Strong, L., Whitesides, G.M. Langmuir 1988, 4, 546558.Google Scholar
6) Hope, M. J.; Bally, M. B.; Webb, G.; Cullis, P. R. Biochim. Biophys. Acta 1985, 812, 5565.Google Scholar
7) Frisken, B.; Asman, C.; Patty, P. Langmuir 2000, 16, 928933.Google Scholar
8) McIntyre, J. C., Sleight, R.G. Biochemistry 1991, 30, 1181911827.Google Scholar
9) Nollert, P.; Kiefer, H.; Jähnig, F. Biophys. J. 1995, 69, 14471455.Google Scholar
10) Struck, D. K.; Hoekstra, D.; Pagano, R. E. Biochemistry 1981, 20, 40934099.Google Scholar
11) Kuhn, H. J. Chem. Phys. 1970, 53, 101108.Google Scholar
12) Crank, J. The Mathematics of Diffusion; 2nd ed.; Oxford University Press: Oxford, 1983.Google Scholar
13) Seifert, U.; Lipowsky, R. Phys. Rev. A 1990, 42, 47684771.Google Scholar
14) Lipowsky, R.; Seifert, U. Mol. Cryst. Liq. Cryst. 1991, 202, 1725.Google Scholar
15) Wilschut, J., Duezguenes, N., Papahadjopoulos, D. Biochemistry 1981, 20, 31263133.Google Scholar
16) Cevc, G., Richardsen, H. Adv. Drug Deliv. Reviews 1999, 38, 207232.Google Scholar
17) Brian, A. A.; McConnell, H. M. Proc. Natl. Acad. Sci. USA 1984, 81, 61596163.Google Scholar
18) Kalb, E.; Frey, S.; Tamm, L. K. Biochim. Biophys. Acta 1992, 1103, 307316.Google Scholar
19) Keller, C. A., Kasemo, B. Biophys. J. 1998, 75, 13971402.Google Scholar
20) Reviakine, I.; Brisson, A. Langmuir 2000, 16, 18061815.Google Scholar
21) Sackmann, E. FEBS Lett. 1994, 346, 316.Google Scholar
22) Bayerl, T. M., Bloom, M. Biophys. J 1990, 58, 357362.Google Scholar
23) Johnson, S. J., Bayerl, T.M., McDermott, D. C., Adam, G.W., Rennie, A.R., Thomas, R.K., Sackmann, E. Biophys. J 1991, 59, 289294.Google Scholar
24) Israelachvili, J. N. Intermolecular and Surface Forces; Harcourt Brace Janovich: London, 1985.Google Scholar
25) Lipowsky, R., Sackmann, E. Structure and dynamics of membranes; Elsevier: Amsterdam, 1995.Google Scholar
26) Ohki, S., Arnold, K. Colloids and Surfaces B: Biointerfaces 2000, 18, 8397.Google Scholar
27) Hetzer, M., Heinz, S., Grage, S., Bayerl, T.M. Langmuir 1998, 14, 982984.Google Scholar
28) Reeves, S. G., Siebert, S.T.A., Roberts, M.A., Durst, R.A. TrAC 1995, 14, 351-355.Google Scholar
29) Bäumner, A. J., Schmid, R.D. Biosens. Bioelectron. 1998, 13, 519529.Google Scholar
30) Cooper, M. A., Hansson, A., Lofas, S., Williams, D.H. Anal. Biochem. 2000, 277, 196205.Google Scholar
31) Percot, A.; Zhu, X.; Lafleur, M. Bioconj. Chem. 2000, 11, 674678.Google Scholar
32) Yamanaka, S. A.; Charych, D. H.; Loy, D. A.; Sasaki, D. Y. Langmuir 1997, 13, 50495053.Google Scholar
33) Nguyen, T., McNamara, K.P., Rosenzweig, Z. Anal. Chim. Acta 1999, 400, 4554.Google Scholar
34) Taylor, M. A., Vadgama, P.M., Higson, S.P.J., Jones, M.N. Biosensors and Bioelectronics 1995, 10, 251260.Google Scholar
35) Ho, R. J.Y., Rouse, B.T., Huang, L. Biochemistry 1986, 25, 55005506.Google Scholar