Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-13T04:22:14.244Z Has data issue: false hasContentIssue false

Stable, Hydrophilic Nitrilotriacetic Acid-Capped Gold Monolayer Protected Clusters

Published online by Cambridge University Press:  01 February 2011

Ndabenhle M. Sosibo
Affiliation:
sosibonm@yahoo.com, University of Zululand, Department of Chemistry, Private Bag X1001, KwaDlangezwa, 3886, South Africa
Robert T. Tshikhudo
Affiliation:
robertt@mintek.co.za, Mintek, Advanced Materials Division, 200 Hans Strijdom Drive, Randburg, 2125, South Africa
Neerish Revaprasadu
Affiliation:
nrevapra@pan.uzulu.ac.za, University of Zululand, Department of Chemistry, Private Bag X1001, KwaDlangezwa, 3886, South Africa
Get access

Abstract

A one step synthesis and functionalization of robust, hydrophilic monolayer protected clusters of gold (Au-MPCs) containing a nitrilotriacetic acid (NTA) is described. The 14 nm Au-MPCs were prepared by the attachment of two bifunctional thioalkylated-poly(ethylene glycol) ligands on the nanoparticles, one containing a nitrilotriacetic acid (NTA) terminal group, while the second hydroxyl (OH) terminated ligand was used as a co-stabilizer to promote the stability of the MPCs. The resulting PEGylated NTA functionalized Au MPCs, which are characterized by TEM, UV-vis and agarose gel electrophoresis are attractive probes for many target species e.g. hexahistidine-tagged proteins. Importantly, the NTA functionality on MPCs ligand shell can be varied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brust, M., Walker, W., Bethell, D., Schriffin, D.J. and Whyman, R., J. Chem. Soc., Chem. Commun., 801 (1994)Google Scholar
2. Templeton, A.C., Wuelfig, W.P. and Murray, R.W., Acc. Chem. Res., 33, 27 (2000)Google Scholar
3. Doty, R.C., Tshikhudo, T.R., Brust, M. and Fernig, D.G., Chem. Mater., 17(18), 4630 (2005)Google Scholar
4. Turkevitch, J., Stevenson, P.C. and Hillier, J., Faraday Discuss., 11, 55 (1951)Google Scholar
5. Hostetler, M.J., Templeton, A.C. and Murray, R.W., Langmuir, 15, 3782 (1999)Google Scholar
6. Song, Y., Huang, T., and Murray, R.W., J. Am. Chem. Soc., 125(38), 2003 Google Scholar
7. You, C.-C., De, M. and Rotello, V.M., Curr. Opin. Chem. Biol., 9, 639 (2005)Google Scholar
8. Paciotti, G.F., Myer, L., Weinreich, D., Goia, D., Pavel, N., McLaughlin, R.E. and Tamarkin, L., Drug Deliv., 11(3), 169 (2004)Google Scholar
9. Rosi, N.L. and Mirkin, C.A., Chem. Rev., 105, 1547 (2005)Google Scholar
10. Liedberg, B., Nylander, C. and Lundstrom, I., Biosens. Bioelectron., 10, i(1995)Google Scholar
11. Henglein, A., J. Phys. Chem., 97, 5457 (1993)Google Scholar
12. Wuelfig, W.P., Gross, S.M., Miles, D.T. and Murray, R.W., J. Am. Chem. Soc., 120, 12696 (1998).Google Scholar
13. Tshikhudo, T.R., Wang, Z. and Brust, M., Mat. Sci. Tech., 20, 980 (2004)Google Scholar
14. Xu, C., Xu, K., Gu, H., Zhong, X., Guo, Z., Zheng, R., X. Zhang and Xu, B., J. Am. Chem. Soc., 126, 3392 (2004)Google Scholar
15. Porath, J., Carlsson, J., Olsson, I. and Belfrage, G., Nature, 258, 598 (1975)Google Scholar
16. Noubhani, A.M., Dierryck, W., Bakalara, N., Laxague, L. and Santarelli, X., J. Chromatogr., B790, 153 (2003)Google Scholar
17. Posewitz, M.C. and Tempst, P., Anal. Chem., 71, 2883 (1999)Google Scholar
18. Dunn, J.D., Watson, J.T. and Bruening, M.L., Anal. Chem., 78, 1574 (2006)Google Scholar
19. Tshikhudo, T.R., Demuru, D., Wang, Z., Brust, M., Secchi, A., Arduini, A., and Pochini, A., Angew. Chem. Int. Ed., 44, 2913 (2005)Google Scholar
20. Brennan, J.L., Hatzakis, N.S., Tshikhudo, T.R, Dirvianskyte, N., Razumas, V., Patkar, S., Vind, J., Svendsen, A., Nolte, R.J.M., Rowen, E.A., and Brust, M., Bioconjugate Chem., 17, 1373 (2006)Google Scholar