Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-20T03:39:04.566Z Has data issue: false hasContentIssue false

Status of Ion Projection Lithography

Published online by Cambridge University Press:  17 March 2011

Wilhelm H. Bruenger
Affiliation:
Fraunhofer Institute for Silicon Technology (ISIT) Fraunhoferstr. 1, D-25524 Itzehoe, Germany, e-mail: bruenger@isit.fhg.de
Rainer Kaesmaier
Affiliation:
Infineon Technologies AG, D-81541 Munich, Germany
Hans Loeschner
Affiliation:
IMS - Ionen Mikrofabrikations Systeme GmbH, A – 1020 Vienna, Austria
Reinhard Springer
Affiliation:
IMS-Chips, Allmandring 30 a, D-70569 Stuttgart, Germany
Get access

Abstract

As part of the European MEDEA project on Ion Projection Lithography (IPL), headed by Infineon Techologies, a process development tool (PDT) has been assembled at IMS, Vienna, with the final target of 50 nm resolution in a 12.5 mm exposure field at 4× demagnification. The ion-optical system (PDT-IOS) has been integrated, including the LEICA mask changer and a sophisticated metrology stage with in-situ diagnostics. In parallel, the LEICA wafer stage and the vacuum compatible off-axis ASML wafer alignment system have been realized. At the moment (Nov00) the He+ ion beam is aligned until the mask level. Ion beam proximity wafer exposures directly behind the mask show a performance of the illumination optics as predicted. 150 mm stencil masks with 125mm diameter, 3μm Si membranes, 50mm × 50mm design field, have been produced by IMS-Chips, Stuttgart. There is expectation to start the PDT-IOS test phase in Q1/01. Using the experimental ion projector at the Fraunhofer-Institute ISiT in Berlin recent resolution tests have demonstrated 50 nm lines and spaces without proximity effect in standard Shipley DUV resist UVIIHS at an exposure dose of 0.5 μC/cm2 for 75 keV He+ions. This was accomplished by 8.5 × demagnification of a new generation of stencil test masks from IMSChips. One further promising application of IPL is the resistless structuring of thin magnetic films to produce magnetic nano dots for future ≥ 100 G bit/in2 storage devices. A consortium of IBM Germany - Speichersysteme Mainz, Fraunhofer-ISiT, LEICA Jena and IMS-Chips in cooperation with IMS-Vienna has been formed to evaluate this technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Melngailis, J., Mondelli, A.A., Berry, I.L., and Mohondro, R., “A review of ion projection Lithography”, J. Vac. Sci. Technol. B 16(3), 927, (1998).Google Scholar
2. Kaesmaier, R., and Loeschner, H., Proc. SPIE Vol 3997 (2000).Google Scholar
3. Karapiperis, L., Adesida, I., Lee, C.A., and Wolf, E.D., J. Vac. Sci. Technol. 19, 1259 (1981).Google Scholar
4. Kyser, D.F. and Viswanathan, N.S., J. Vac. Sci. Technol. 12, 1305 (1995).Google Scholar
5. Ando, M. and Muray, J.J., J. Vac. Sci. Technol. B 6, 986 (1988).Google Scholar
6. Bruenger, W.H., Buchmann, L.-M., Naumann, F., Friedrich, D., Finkelstein, W., and Mohondro, R., J. Vac. Sci. Technol. B 13, 2561 (1995).Google Scholar
7. Jager, P.W.H. de et al. , J. Vac. Sci. Technol. B 17(6), 3098 (1999).Google Scholar
8. Kaesmaier, R. and Löschner, H., Microelectronic Engineering 53, 37 (2000).Google Scholar
9. Bruenger, W.H., Loeschner, H. Fallmann, W., Finkelstein, W., and Melngailis, J., Microelectronic Engineering 27, 323 (1995).Google Scholar
10. Bruenger, W.H., Torkler, M., Buchmann, L.-M., and Finkelstein, W., J. Vac. Sci. Technol. B 15(6), 2355 (1997).Google Scholar
11. Henke, W., and Torkler, M., J. Vac. Sci. Technol. B 17(6), 3116 (1999).Google Scholar
12. Letzkus, L., Butschke, J., Hoefflinger, B., Irmscher, M., Reuter, C., Springer, R., Ehrmann, A., and Mathuni, J., Microelectronic Engineering 53, 609 (2000).Google Scholar
13. Heuberger, A. and Bruenger, W.H., Mat. Res. Soc. Symp. Proc. Vol 584, 3 (2000).Google Scholar
14. Hirscher, S. et al. , MNE-2000, Jena, 18.-21. Sept. 2000, to be published in Microelectronic Engineering.Google Scholar
15. Terris, B.D. et al. , Appl. Phys. Lett. 15, 403 (1999).Google Scholar
16. Chappert, C., Bernas, H., Ferré, J., Kottler, V. Jamet, J.P., Chen, Y., Cambril, E., Devolder, T., Rousseaux, F., Mathet, V., and Launois, H., Science 280, 1919 (1998).Google Scholar
17. Bruenger, W.H., Torkler, M., Dzionk, C., Terris, B.D., Folks, L., Weller, D., Rothuizen, H., Vettiger, P., Stangl, G., and Fallmann, W., Microelectronic Engineering 53, 605 (2000).Google Scholar
18. Ishii, T., Nozawa, H., and Tamamura, T., Appl. Phys. Lett. 70(9), 1110 (1997).Google Scholar
19. Gonsalves, K.E., Hu, Y., Wu, H., and Merhari, L., MRS 2000-Fall meeting, Symp. D, Boston, to be publishedGoogle Scholar