Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-16T03:47:00.013Z Has data issue: false hasContentIssue false

Steady State Phase Diagram of Cu-Ag Under Ball Milling: An XRD and APFIM Study

Published online by Cambridge University Press:  21 February 2011

F. Wu
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA
P. Bellon
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA
A.J. Melmed
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
T.A. Lusby
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
Get access

Abstract

The nature of the steady state reached during ball milling of CuxAg1−x powders (x=35 to 75) is studied as a function of the milling temperature (85K≤T≤503K). The characterization of the powders is performed by using x-ray diffraction, differential calorimetry and atom probe field ion microscopy. A steady-state phase diagram is built. Three-phase coexistence is shown to generally take place at intermediate milling temperatures. Atom probe data reveals that the solid solution stabilized by low milling temperature is nearly random, where as milling at elevated temperatures results in the decomposition of the elements at a lengthscale of 20∼30 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Koch, C.C., Mechanical Milling and Alloying, Materials Science and Technology Vol.15, ed. Cahn, R.W., Haasen, P., Kramer, E.J. (VCH, Weinheim, 1991) p. 193.Google Scholar
2 Ma, E. and Atzmon, M., Mater. Chem. Phys. 39, p.249 (1995).Google Scholar
3 Xu, J., Herr, U., Klassen, T., Averback, R. S., J. Appl. Phys. 79, p.3935 (1996).Google Scholar
4 Yavari, A. R. and Desre, P. J., Phys. Rev. Lett. 68, p.2235 (1992).Google Scholar
5 Gente, C., Oehring, M. and Bonnann, R., Phys. Rev. B 48, p.13244 (1993).Google Scholar
6 Klassen, T., Herr, U. and Averback, R.S., Acta Mater. 45, p.2921 (1997).Google Scholar
7 Martin, G. and Bellon, P., Solid State Phys. 50, p. 189 (1997).Google Scholar
8 Huang, J. Y., Yu, Y. D., Wu, Y. K., Li, D. X., and Ye, H. Q., Acta Mater. 45, p. 113 (1997).Google Scholar
9 Huang, J. Y., Yu, Y. D., Wu, Y. K., Li, D. X., and Ye, H. Q., J. Mater. Res. 12, p.936 (1997).Google Scholar
10 Bellon, p., Averback, R.S., Phys.Rev.Lett. 74, p. 1819 (1995).Google Scholar
11 Najafabadi, R., Srolovitz, D.J., Ma, E. and Atzmon, M., J.Apply.Phys. 74, p. 3144 (1993).Google Scholar
12 Linde, R.K., J.Apply.Phys. 37, p.934 (1996).Google Scholar
13 Wu, F., Bellon, P., Melmed, A.J., Lusby, T.A., to be published.Google Scholar
14 Xu, J., Collins, G.S., Peng, L.S.J. and Atzmon, M., Acta Mater. 47, p.1241(1999).Google Scholar
15 Ma, E., He, J.H., Schilling, P. J., Phys. Rev. B. 55, 5542 (1997).Google Scholar