Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T18:14:11.668Z Has data issue: false hasContentIssue false

Step bunching during Si(001) homoepitaxy caused by the surface diffusion anisotropy

Published online by Cambridge University Press:  11 February 2011

J. Mysliveček
Affiliation:
Institut für Schichten und Grenzflächen, Forschungszentrum Jülich, D-52425 Jülich, Germany Institut für Halbleiterphysik, Johannes Kepler Universität, A-4040 Linz, Austria
C. Schelling
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität, A-4040 Linz, Austria
F. Schäffler
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität, A-4040 Linz, Austria
G. Springholz
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität, A-4040 Linz, Austria
P. Šmilauer
Affiliation:
Czech Academy of Sciences, Cukrovarnická 10, 162 53 Praha 6, Czech Republic
J. Krug
Affiliation:
Fachbereich Physik, Universität Essen, D-45117 Essen, Germany
B. Voigtländer
Affiliation:
Institut für Schichten und Grenzflächen, Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

Scanning tunneling microscopy experiments show that the unstable growth morphology observed during molecular beam homoepitaxy on slightly vicinal Si(001) surfaces consists of straight step bunches. The instability occurs under step-flow growth conditions and vanishes both during low-temperature island growth and at high temperatures. An instability with the same characteristics is observed in a 2D Kinetic Monte Carlo model of growth with incorporated Si(001)-like diffusion anisotropy. This provides strong evidence that the diffusion anisotropy destabilizes growth on Si(001) and similar surfaces towards step bunching. This new instability mechanism is operational without any additional step edge barriers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fukui, T. and Saito, H., Jpn. J. Appl. Phys. 29, L483 (1990).Google Scholar
Krishnamurthy, M., Wassermeier, M., Williams, D. R. M., and Petroff, P. M., Appl. Phys. Lett. 62, 1922 (1993).Google Scholar
Ishizaki, J., Ohkuri, K., and Fukui, T., Jpn. J. Appl. Phys. 35, 1280 (1996).Google Scholar
2. Lapena, L., Berbezier, I., Gallas, B., and Joyce, B., Thin Sol. Films 336, 124 (1998).Google Scholar
3. Schelling, C., Springholz, G., and Schäffler, F., Phys. Rev. Lett. 83, 995 (1999); Thin Sol. Films 369, 1 (2000).Google Scholar
4. Mo, Y.-W., Swartzentruber, B. S., Kariotis, R., Webb, M. B., and Lagally, M. G., Phys. Rev. Lett. 63, 2393 (1989).Google Scholar
5. Chadi, D. J., Phys. Rev. Lett. 59, 1691 (1987).Google Scholar
6. Hoeven, A. J., Lenssinck, J. M., Djikkamp, D., van Loenen, E. J. and Dieleman, J., Phys. Rev. Lett. 63, 1830(1989).Google Scholar
7. Liu, D.-J. and Weeks, J. D., Phys. Rev. B 57, 14891 (1998).Google Scholar
8. Krug, J., Plischke, M., and Siegert, M., Phys. Rev. Lett. 70, 3271 (1993).Google Scholar
9. Krug, J., Adv. Phys. 46, 139 (1997).Google Scholar
10. Schwoebel, R. L. and Shipsey, E. J., J. Appl. Phys. 37 (1966) 3682.Google Scholar
Schwoebel, R. L., J. Appl. Phys. 40, 614(1969).Google Scholar
11. Bales, G. S. and Zangwill, A., Phys. Rev. B 41, 5500 (1990).Google Scholar
12. Johnson, M. D., Orme, C., Hunt, A. W., Graff, D., Sudijono, J., Sander, L. M., and Orr, B. G., Phys. Rev. Lett. 72, 116 (1994).Google Scholar
13. Mo, Y.-W. and Lagally, M. G., Surf Sci. 248, 313 (1991).Google Scholar
Mo, Y.-W., Kleiner, J., Webb, M. B., and Lagally, M. G., Surf. Sci. 268, 275 (1992).Google Scholar
14. Brocks, G., Kelly, P. J., and Car, R., Surf. Sci. 269/ 270, 860 (1992).Google Scholar
Borovsky, B., Krueger, M., and Ganz, E., Phys. Rev. B 59, 1598 (1999).Google Scholar
15. Pearson, C., Krueger, M., and Ganz, E., Phys. Rev. Lett. 76, 2306 (1996).Google Scholar
16. Roland, C. and Gilmer, G. H., Phys. Rev. Lett. 67, 3188 (1991).Google Scholar
Zhang, Q.-M., Roland, C., Boguslawski, P., and Bernholc, J., Phys. Rev. Lett. 75, 101 (1995).Google Scholar
17. Tromp, R. M. and Mankos, M., Phys. Rev. Lett. 81, 1050 (1998).Google Scholar
18. Clarke, S., Wilby, M. R. and Vvedensky, D. D., Surf Sci. 255, 91 (1991).Google Scholar
19. Voigtländer, B., Weber, T., Šmilauer, P., and Wolf, D. E., Phys. Rev. Lett. 78, 2164 (1997).Google Scholar
20. Pimpinelli, A. and Videcoq, A., Surf Sci. 445, L23 (2000).Google Scholar
21. Wu, F., Jaloviar, S. G., Savage, D. E., and Lagally, M. G., Phys. Rev. Lett. 71, 4190 (1993).Google Scholar
22. Mysliveček, J., Schelling, C., Schäffler, F., Springholz, G., Šmilauer, P., Krug, J., Voigtländer, B., Surf. Sci. 520, 193 (2002).Google Scholar