Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-14T22:04:01.522Z Has data issue: false hasContentIssue false

Strain Relief Mechanisms in The Growth of GexSi1−x/Si(110) Heterostructures

Published online by Cambridge University Press:  25 February 2011

R. Hull
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill NJ 07974
J.C. Bean
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill NJ 07974
B. Weir
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill NJ 07974
L.J. Peticolas
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill NJ 07974
D. Bahnck
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill NJ 07974
L.C. Feldman
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill NJ 07974
Get access

Abstract

We describe a detailed quantitative theoretical and experimental analysis of strain relief mechanisms in GexSi1−x/Si(110). For this interface, both partial and total glide dislocations may effect strain relief. Detailed comparison between experimental measurement and theoretical prediction of the regimes in which the two types of dislocations are observed allows a very accurate determination of the stacking fault energy in GexSi1−x alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bean, J.C., Feldman, L.C., Fiory, A.T., Nakahara, S. and Robinson, I.K., J. Vac. Sci. Technol. A2, 436 (1984)Google Scholar
2. Hull, R., Bean, J.C., Peticolas, L.J. and Bahnck, D., Appl.Phys. Lett. (1991)Google Scholar
3. Heidenreich, R.D. and Shockley, W. in, “Report on a Conference on Strength of Solids”, p. 57 (Physical Society, London, 1948)Google Scholar
4. Thompson, N., Proc. Phys. Soc. 66B, 481 (1953)Google Scholar
5. Maree, P.M.J., Barbour, J.C., Veen, J.F. van der, Kavanagh, K.L., Bulle-Lieuwma, C.W.T. and Viegers, M.P.A., J. Appl. Phys. 62, 4413 (1987)Google Scholar
6. Wegscheider, W., Eberl, K., Menczigar, U. and Abstreiter, G., Appl. Phys. Lett. 57, 875 (1990)Google Scholar
7. Hwang, D.M., Bhatt, R., Schwarz, S.A. and Chen, C.Y., Phys. Rev. Lett. 66, 739 (1991)Google Scholar
8. Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974); J.W. Matthews, J. Vac. Sci. Technol. 12, 126 (1975) and References contained therein.Google Scholar
9. Dodson, B.W. and Tsao, J.Y., Appl. Phys. Lett. 51, 1325 (1987)Google Scholar
10. Schmid, E., Z. Elektrochem 37, 447 (1931)Google Scholar
11. George, A. and Rabier, J., Revue. Phys. Appl. 22, 1941 (1987)Google Scholar
12. Hirsch, P.B, Howie, A., Nicholson, R.B., Pashley, D.W. and Whelan, M.J., “Electron Microscopy of Thin Crystals”, 2nd ed. (Robert E. Krieger, Malabar, FL, 1977)Google Scholar
13. Fritz, I.J., Appl. Phys. Lett. 51, 1080 (1987)Google Scholar
14. Hull, R., Bean, J.C., Bahnck, D., Peticolas, L.J., Short, K.T. and Unterwald, F.C., J. Appl. Phys. 70, 2052 (1991)Google Scholar