Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T13:14:44.306Z Has data issue: false hasContentIssue false

Strength and Toughness of MG-PSZ and Y-TZP Materials at Cyrogenic Temperatures

Published online by Cambridge University Press:  25 February 2011

S. Veitch
Affiliation:
Nilcra Ceramics Pty. Ltd., Northcote, Victoria
M. Marmach
Affiliation:
Nilcra Ceramics Pty. Ltd., Northcote, Victoria
M. V. Swain
Affiliation:
CSIRO Division of Materials Science, Clayton, Victoria 3168 Australia
Get access

Abstract

The influence of temperature between R.T. and liquid nitrogen (−196°C) on the strength and toughness of three grades of Mg-PSZ and a 3 mol% Y-TZP material have been investigated. The toughness of the Mg-PSZ materials passes through a maximum at the Ms temperature, whereas the strength increases monotonically with decreasing temperature regardless of Ms. The Y-TZP material exhibits increasing toughness with decreasing temperature but the strength passes through a maximum at -80°C. The results are discussed in terms of transformation and R-curve limited strength of transformation toughened ceramics. For Mg-PSZ materials it is suggested that the critical stress to initiate a non reversible transformation on the tensile surface is responsible for microcracking and ensueing R-curve development.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Green, D. J., Hannink, R. H. J., Swain, M. V. and Marshall, D. B., “Transformation Toughened Ceramics” CRC to be published.Google Scholar
2. Lange, F. F., J. Mater. Sci. 17, 255 (1982).Google Scholar
3. Becher, P. F., Swain, M. V. and Ferber, M., J. Mater. Sci., 22, [1] 1987.Google Scholar
4. Hannink, R. H. J. and Swain, M. V., J. Aust. Ceram. Soc., 18, 53 (1982).Google Scholar
5. Swain, M. V., Hannink, R. H. J. and Drennan, J., “Ceramic Microstructures -86”, Proc. of Conf. on Ceramic Metal Interfaces, Berkeley, July 28–31, 1986 to be published.Google Scholar
6. Olsen, G. B., ASM Materials Science Seminar, “Deformation, Processing and Structure”, 391–425 (1984).Google Scholar
7. Chen, I-W. and Reyes-Morel, P., J. Am. Ceram. Soc., 69, 181 (1986).Google Scholar
8. Reyes-Morel, P., Ph.D Thesis MIT 1986.Google Scholar
9. Hannink, R. H. J., Muddle, B. and Swain, M. A. V., Proc. 12th Aust. Ceram. Soc., August 1986 P. 145–152.Google Scholar
10. Marshall, D. B., J. Am. Ceram. Soc., 69, 173180 (1986).Google Scholar
11. Swain, M. V. and Rose, L.R.F., J. Am. Ce-ram. Soc., 69, 511518 (1986).Google Scholar
12. Steinbrech, R. and Heuer, A. H. to be published.Google Scholar
13. Cook, R. F. and Lawn, B. R., J. Am. Ceram. Soc. 66,C200 (1983).Google Scholar
14. Freiman, S. W., Melville, D. R. and Mast, R.W., JF-lhater. Sci. 8, 1527 (1973).Google Scholar
15. Swain, M. V., Acta Metall. 33, 2083–88 (1985).Google Scholar
16. Hannink, R. H. J. and Swain, M. V., “Deformation of Ceramic Materials II”. p. 695 Plenum Press (1984).Google Scholar
17. Swain, M. V., Nature 322, 234–6 (1986).Google Scholar
18. Swain, M. V. and Hannink, R. H., p.225, Adv. in Ceramics Vol.12, Science and Technology of Zirconia II. Edts Claussen, N., Rhule, M. and Heuer, A. H..Google Scholar
19. Marshall, D. B. and Swain, M. V. to be published.Google Scholar
20. Swain, M. V., to be published in Science and Technology of Zirconia Ceramics Ill. Tokyo, Sept. 1986.Google Scholar