Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T17:02:00.610Z Has data issue: false hasContentIssue false

Stress-Recovery Transients in Ultra Thin Oxides on Silicon

Published online by Cambridge University Press:  10 February 2011

Per Lundgren
Affiliation:
Department of Solid State Electronics, Chalmers University of Technology, S - 412 96 Göteborg, Sweden, per@ic.chalmers.se, anders@ic.chalmers.se, loke@ic.chalmers.se
Anders Jauhiainen
Affiliation:
Department of Solid State Electronics, Chalmers University of Technology, S - 412 96 Göteborg, Sweden, per@ic.chalmers.se, anders@ic.chalmers.se, loke@ic.chalmers.se
Get access

Abstract

The logarithmic current transients observed after electrical stress of 2 nm thick oxides on silicon show no sign of saturation for times up to 1 Ms. These results contradict the hypothesis that the tunneling distance from oxide defects to an interface is the main source of the dispersive relaxation in our case, and this might very well extend to other cases where such relaxation is observed in MOS devices with thicker oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Farmer, K. R., Andersson, M. O., and Engström, O., Appl. Phys. Lett. 58, 2666 (1991).Google Scholar
2. Lundgren, P., Andersson, M. O., Fanner, K. R., and Engström, O., Journal of Non-Crystalline Solids 187, 140 (1995).Google Scholar
3. Lakshmanna, V. and Vengurlekar, A. S., J. Appl. Phys. 63, 4548 (1988).Google Scholar
4. Brar, B., Wilk, G. D., and Seabaugh, A. C., Appl. Phys. Lett. 69, 2728 (1996).Google Scholar
5. Scher, H., Shlesinger, M.F. and Bendler, J.T., Physics Today, January, p. 26 (1991).Google Scholar
6. Lundström, I. and Svensson, C., J. Appl. Phys. 43, 5045 (1972).Google Scholar
7. Schmidlin, F. W., J. Appl. Phys. 37, 2823 (1966).Google Scholar
8. Lundgren, P., Andersson, M. O., Farmer, K. R., and Engström, O., Microelectronic Engineering 28, 67 (1995).Google Scholar
9. Lundgren, P., Andersson, M. O., and Farmer, K. R., J. Appl. Phys. 74, 4780 (1993).Google Scholar
10. Ricco, B., Olivo, P., Nguyen, T. N., Kuan, T. S., and Feniani, G., IEEE Trans. Electron Dev. 35, 432 (1988).Google Scholar
11. Maserjian, J. in The physics and chemistry of SiO2 and the Si-SiO2 interface”. edited by Helms, C. and Deal, B. E. (Plenum, New York, 1988) p. 497.Google Scholar
12. Hiroshima, M., Yasaka, T., Miyazaki, S., and Hirose, M., Jpn. J. Appl. Phys. 33, 395 (1994).Google Scholar
13. Depas, M., Degraeve, R., Nigam, T., Groeseneken, G., and Heyns, M., in Extended Abstracts of the 1996 International Conference on Solid State Devices and Materials, Yokohama, 1996, pp. 533535.Google Scholar
14. Suná, J., Farrás, E., Placencia, I., Barniol, N., Martin, F., and Aymerich, X., Appl. Phys. Lett. 55, 128 (1989).Google Scholar
15. Oldham, T. R., McLean, F. B., Boesch, H. E. Jr, and McGarrity, J. M., Semicond. Sci. Technol. 4, 986 (1989).Google Scholar
16. Bourcerie, M., Doyle, B. S., Marchetaux, J-C., Soret, J-C., and Boudou, A., IEEE Trans, on Electron Dev. 37, 708 (1990).Google Scholar