Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T17:22:52.644Z Has data issue: false hasContentIssue false

Structural Investigation of NaNO3 Nanophase Confined in Porous Silica

Published online by Cambridge University Press:  21 February 2011

R. Mu
Affiliation:
Physics Department, Fisk University, Nashville, TN 37208
D. O. Henderson
Affiliation:
Physics Department, Fisk University, Nashville, TN 37208
F. Jin
Affiliation:
Physics Department, Fisk University, Nashville, TN 37208
Get access

Abstract

We have demonstrated that thermal and vibrational investigations of sodium nitrate (NaNO3) physically confined in the porous silica hosts is an effective approach to mimic the solute clustering effects in aqueous solution. The results show that the structure of the NaNO3 confined in nanopores can be divided into three regions, i.e., the regular solid phase region, solution-like molecular aggregates region, and a new solid-like phase region. Depending upon the pore size of the porous host, the physical range of the three regions varies accordingly. For pore size d <2.5 nm, only the solution-like molecular aggregates phase remains.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Frost, R. L. and James, D. W., Faraday Discuss. Chem. Soc. 78, 3223(1982).Google Scholar
2. Koussinsa, F., Bertin, F., and Bouix, J., J. Raman Spectrosc. 20, 227 (1989).CrossRefGoogle Scholar
3. Bugg, C. E., J. Crystal Growth 76, 535 (1986); F. Rosenberger and E. J. Meehan, J. Crystal Growth, 90, 74(1988).CrossRefGoogle Scholar
4. Rusli, I. T., Schrader, G. L., and Larson, M. A., J. Crystal Growth, 97, 345(1989).5. F. Jin,CrossRefGoogle Scholar
5. Mu, R., Hua, F., Henderson, D. O., J. Crystal Growth. (submitted) (1993).Google Scholar
6. Mu, R., Jin, F., Morgan, S. H., Henderson, D. O., and Silberman, E., J. Chem. Phys. (accepted for publication) (1993).Google Scholar
7. Schmahl, W. W. and Salje, E., Phys. Chem. Minerals, 16, 790 (1989); R. M. Lynden-Bell, M. Ferrario, I. R. McDonald, and E. Salje, J. Phys.: Condens. Matter, 1, 6523(1989); R. J. Reeder, S. A. T. Redfern, and E. Salje, Phys. Chem. Minerals, 15, (605(1988); M. J. Harris, E. K. H. Salje, and B. Guttler, J. Phys.: Condens. Matter 2, 5517(1990).CrossRefGoogle Scholar
8. Brehat, F. and Wynche, B., J. Phys. 18, 4247(1985).Google Scholar
9. Terauchi, H. and Yamada, Y., J. Phys. Soc. L3, 446(1972).CrossRefGoogle Scholar
10. Warnock, J., Awschalom, D. D., and Shafer, M. W., Phys. Rev. Lett. 57, 1753(1986); D. D. Awschalom and J. Warnock, Phys. Rev. B 35, 6779(1987).CrossRefGoogle Scholar
11. Mu, R. and , Malhotra, Phys. Rev. B 44, 4296(1991); R. Mu and Malhotra, Phys. Rev. B [Rapid Comm.] 46, 532 (1992) (and references therein).CrossRefGoogle Scholar
12. Jackson, C. L. and Mckenna, G. B., J. Chem. Phys. 93, 9002(1990).CrossRefGoogle Scholar
13. Trevino, S. F. and Prask, H., Phys. Rev. B 10, 739(1974).CrossRefGoogle Scholar
14. Lettiteri, T. R. and Brody, E. M., Solid State Comm. 26, 235(1978).CrossRefGoogle Scholar
15. Neumann, G. and Vogt, H., Phys. Status Solidi B 85, 179(1978). H. Yasaka, A. Sakai, and T. Yagi, J. Phys. Soc. Japan 54, 3697(1985).CrossRefGoogle Scholar
16. Richter, H., Wang, Z. P., and ley, L., Solid State Comm. 39, 625 (1981).CrossRefGoogle Scholar
17. Yang, W. H., Huber, T. E., Lubin, J. A., Walrafen, G. E., and Huber, C. A., Mat. Res. Soc. Symp. Proc 286 (in press)(1992).CrossRefGoogle Scholar
18. Multani, M., Ayyub, P., Palkar, V. and Guptasarma, P., Phase Transitions 24–26, 91 (1990).CrossRefGoogle Scholar
19. Zhuravlev, L. T., Langmuir 3, 316(1987).CrossRefGoogle Scholar