Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T11:34:43.964Z Has data issue: false hasContentIssue false

Structural Relaxations At Metal / Metal Oxide Interfaces

Published online by Cambridge University Press:  25 February 2011

W. Mader*
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werks toffwissen schaft, Seestrasse 92, D-7000 Stuttgart, Federal Republic of, Germany
Get access

Abstract

Recent work is reviewed on the structure of metal/metal oxide interfaces in model systems with well defined orientation relationships and boundary inclination. Structural relaxations established upon interface formation may be described as misfit dislocations which can be investigated using conventional and high resolution TEM. The conditions for obtaining informations at an atomistic scale using HRTEM are critically discussed. Specifically, geometrical restrictions are found to be critical in HRTEM study of {111} interfaces in fee metal -fee oxide systems. Different misfit dislocation networks at {100} interfaces in fee metal - fee oxide systems were observed which may be correlated to the relative strength of metal-anion and metal-cation bonds at the interface. In strongly interacting systems misfit dislocations can possess an equilibrium stand-off distance from the interface. In the system Nb-Al2O3 the interface is shown to be coherent by the registry of atomic columns adjacent to the interface. In this configuration energy is minimized by unbroken strong interfacial bonds and misfit localization in the elastically softer metal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Doerner, M.F., Oliver, W.C., Pharr, G.M., and Brotzen, F.R. (eds.), Thin Films: Stresses and Mechanical Properties (Mat. Res. Soc Symp. Proc. 188. Materials Research Society, Pittsburgh, PA, 1990).Google Scholar
2. Lille, E.D., Ho, P.S., Jaccodine, R., and Jackson, K. (eds.), Electronic Packaging Materials Science V (Mat. Res. Soc. Symp. Proc. 203. Materials Research Society, Pittsburgh, PA, 1991).Google Scholar
3. Dhingra, A.K., and Fishman, S.G. (eds.), Interfaces in Metal-Matrix Composites The Metallurgical Society, Inc., 1986).Google Scholar
4. Pantano, C.G., and Chen, E.J.H. (eds.), Interfaces in Composites (Mat. Res. Soc. Symp. Proc. 170, Materials Research Society, Pittsburgh, PA, 1990).Google Scholar
5. Riihle, M., Evans, A.G., Ashby, M.F., and Hirth, J.P. (eds.), Metal-Ceramic Interfaces (Acta-Scripta Metallurgica Proceedings Series 4, Pergamon Press, Oxford, 1990).Google Scholar
6. Naidich, Y.V., Progr. in Surf, and Membrane Sci. 14, 353484 (1981).CrossRefGoogle Scholar
7. Mader, W., in Characterization of Defects in Materials, edited by Siegel, R.W., Weertman, J.R., and Sinclair, R. (Mat. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987) pp. 403408.Google Scholar
8. Mader, W., and Riihle, M., Acta metall. 37, 853866 (1989).Google Scholar
9. Mayer, J., Flynn, C.P., and Rühle, M., Ultramicroscopy 33, 5161 (1990).Google Scholar
10. Knauss, D., and Mader, W., Ultramicroscopy 37, 247262 (1991).Google Scholar
11. Ernst, F., Pirouz, P., and Heuer, A.H., Phil. Mag. A 63. 259277 (1991).Google Scholar
12. Ernst, F., in High-Resolution Electron Microscopy of Defects in Materials, edited by Sinclair, R., Smith, D.J., and Dahmen, U. (Mat. Res. Soc. Symp. Proc. 183. Pittsburgh, PA, 1990) pp. 4954.Google Scholar
13. Merkle, K.L., in Metal-Ceramic Interfaces, edited by Rühle, M., Evans, A.G., Ashby, M.F., and Hirth, J.P. (Acta-Scripta Metallurgica Proceedings Series 4 Oxford, 1990) pp. 242249.Google Scholar
14. Necker, G., and Mader, W., Phil. Mag. Lett. 58, 205212 (1988).Google Scholar
15. Gao, Y., and Merkle, K.L., J. Mater. Res. 5, 19952003 (1990).CrossRefGoogle Scholar
16. Muschik, T., and Rühle, M., Phil. Mag., in the press.Google Scholar
17. Lu, P., Tong, I.-C., and Cosandey, F., this Volume.Google Scholar
18. Kalonji, G., J. Physique 46, C4249 (1985).Google Scholar
19. Ishida, Y. (eds.), Fundamentals of Diffusion Bonding (Studies in Physical and Theoretical Chemistry 48, Elsevier, Amsterdam, 1987).Google Scholar
20. Fischmeister, H.F., Mader, W., Gibbesch, B., and Elssner, G., in Interfacial Structure. Properties, and Design, edited by Yoo, M.H., Clark, W.A.T., and Briant, C.L. (Mat. Res. Soc. Symp. Proc. 122, Pittsburgh, PA, 1988) pp. 529540.Google Scholar
21. Bauer, E.G., et al., J. Mater. Res. 5, 852894 (1990).Google Scholar
22. Meijering, J.L., in Advances in Materials Research (edited by Herman, H.), p. 181, Wiley, New York (1971).Google Scholar
23. Bonvalot-Dubois, B., Dhalenne, G., Berthon, J., Revcolevschi, A., and Rapp, R.A., J. Am. Ceram. Soc. 21, 196301 (1988).Google Scholar
24. Mayer, J., Dura, J.A., Flynn, C.P., and Rühle, M., Surf. Coatings Techn. 43/44. 199212 (1990).Google Scholar
25. Matthews, J.W., in Dislocations in Solids (edited by Nabarro, F.R.N.), p. 461562, North-Holland Publ. Co, Amsterdam (1979).Google Scholar
26. Bollmann, W., Crystal Defects and Crystalline Interfaces (Springer, New York, 1970).CrossRefGoogle Scholar
27. Hila, F., and Gillet, M., Thin Solid Films 98 2331 (1982).Google Scholar
28. Regheere, G., and Penisson, J.M., J. Physique 51, Cl909 (1990).Google Scholar
29. Shieu, F.-S., and Sass, S.L., Acta metall. mater. 38 16531667 (1990).CrossRefGoogle Scholar
30. Shieu, F.-S., Raj, R., and Sass, S.L., Acta metall. mater. 38, 22152224 (1990).Google Scholar
31. Trampert, A., Ernst, F., Flynn, C.P., Fischmeister, H.F., and Rühle, M., Acta metali. mater., to be published.Google Scholar
32. Blöchl, P., Das, G.P., Fischmeister, H.F., and Schönberger, U., in Metal-Ceramic Interfaces, edited by Rühle, M., Evans, A.G., Ashby, M.F., and Hirth, J.P. (Acta-Scripta Metallurgica Proceedings Series 4, Oxford, 1990) pp. 914.Google Scholar
33. Johnson, K.H., and Pepper, S.V., J. Appl. Phys. 53, 66346637 (1982).CrossRefGoogle Scholar
34. Burger, K., Mader, W., and Rühle, M., Ultramicroscopy 22, 1–14 (1987).Google Scholar
35. Kamat, S.V., Hirth, J.P., and Carnahan, B., in Multilayers: Synthesis. Properties, an Nonelectronic Applications, edited by Barbee, T.W. Jr., Spaepen, F., and Greer, L. (Mat. Res. Soc. Symp. Proc. 103, Pittsburgh, PA, 1988) pp. 55–60.Google Scholar
36. Mader, W., and Knauss, D., Acta metall. mater., to be published.Google Scholar
37. Head, A.K., Phil. Mag. 44, 9294 (1952).CrossRefGoogle Scholar
38. Dundurs, J., and Sendeckyj, G.P., J. Appl. Phys. 36, 33533354 (1965).Google Scholar
39. Dundurs, J., J. Appl. Mech. 36, 650652 (1969).Google Scholar