Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-23T17:15:59.606Z Has data issue: false hasContentIssue false

Studies of Surface State Densities of Semiconductors by Room-Temperature Photoreflectance

Published online by Cambridge University Press:  10 February 2011

J. S. Hwan
Affiliation:
Dept. of Physics, National Cheng Kung University, Tainan, Taiwan, R. O. C., jshwang@ibm60.phy.ncku.edu.tw
G. S. Chang
Affiliation:
Dept. of Physics, National Cheng Kung University, Tainan, Taiwan, R. O. C., jshwang@ibm60.phy.ncku.edu.tw
Get access

Abstract

In this study, we develop a novel approach to determine the surface Fermi level and the surface state densities of semiconductors. The built-in electric field and thus the surface barrier height are evaluated from the Franz-Keldysh oscillations in the PR spectra. Based on the thermionic-emission theory and current-transport theory, the surface state density as well as the pinning position of the surface Fermi level can be determined from the dependence of the surface barrier height on the pump beam intensity. Even though this method is significantly simpler, easier to perform, and time efficient compared with other approaches, the results obtained agree with the literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Woodall, J. M., Kirchner, P. D., Freeouf, J. L., Mclnturff, D. T., Melloch, M. R., and Pollak, F. H.. Trans. R. Soc. London 344, 521 (1993).Google Scholar
(2) Yin, X., Chen, H.-M., Pollak, F. H., Cao, Y, Montano, P.A., Kirchner, P. D., Pettit, G. D., and Woodall, J. M., J. Vac. Sci. Technol. A 10 131 (1992)Google Scholar
(3) S. M. Sze, in Semiconductor Devices Physics and Technology, (Wiley, New York, 1985), p. 113.Google Scholar
(4) Hwang, J. S., Tyan, S. L., Chou, W. Y. Lee, M. L., Weybum, D., Hang, Z.. Lin, H. H., and Lee, T. L., Appl. Phys. Lett. 64. 3314 (1994).Google Scholar
(5) Hwang, J. S., Chou, W. Y.. Tyan, S. L., Lin, H. H., and Lee, T. L., Appl. Phys. Lett. 67. 2350 (1995).Google Scholar
(6) Hwang, J. S., Hwang, W. C., Chang, G. S., and Cheng, Y. J., “A photoreflectance study of the surface state density and distribution function of InAlAs”, submitted to J. of Appl. Phys.Google Scholar
(7) Van Hoof, C., Deneffe, K., DeBoeck, J., Arent, D. J., and Borghs, G., Appl. Phys. Lett. 54, 608 (1989).Google Scholar
(8) Bhattacharya, R. N., Shen, H., Parayanthal, P., Pollak, F. H., Coutts, T., and Aharoni, H., Phys, Rev. B 37, 4044 (1988).Google Scholar
(9) Shen, H., Pollak, F. H., and Woodall, J. M., J. Vac. Sci. Technol. B 8, 413 (1990).Google Scholar
(10) Shen, H., and Dutta, M.. J. Appl. Phys. 78, 2151 (1995).Google Scholar
(11) Kanata, T., Matsunaga, , takaura, H., Hamakaea, Y., and Nishino, T., in Proceedings of the Society of Photo-Optical Instrumentation Engineer (SPIE, Bellingham, 1990), Vol. 1286, p. 56.Google Scholar
(12) Hovel, H., in Semiconductor and Semimetals (Academic, New York, 1975), Vol. 11, p. 59.Google Scholar
(13) Rhoderick, E. H., in Metal-Semiconductor Contacts (Clarendon, Oxford, 1980), p. 101.Google Scholar
(14) Hecht, M., Phys. Rev. B 41, 7918 (1990).Google Scholar
(15) Pollak, Fred H., Shen, H., Materials Science and Engineering, R10, Nos. 7–8, Oct. 1, 1993, pp. 275374.Google Scholar