Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T15:06:11.569Z Has data issue: false hasContentIssue false

Superconductivity in Nonsymmetric Epitaxial YBa2Cu3O7−δ - PrBa2Cu3O7−δ Superlattices Grown by Pulsed Laser Ablation

Published online by Cambridge University Press:  16 February 2011

Douglas H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
David P. Norton
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
J. D. Budai
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
D. K. Christen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
B. C. Sales
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
R. Feenstra
Affiliation:
Solid State Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6056
Get access

Abstract

Pulsed KrF (248 nm) excimer laser ablation has been used to grow nonsymmetric epitaxial YBCO/PrBCO superlattices containing 1-, 2-, 3-, 4-, and 8-unit-cell-thick YBCO layers, separated by N-cell-thick insulating PrBCO layers (N = 1–16). The 1×N and 2×N structures exhibit a rapid initial decrease of Tco with increasing PrBCO layer thickness, followed by saturation of Tco at a nonzero value, as the YBCO layers' separation is increased further. The limiting Tco values for 1-, 2-, 3-, 4-, and 8-cell-thick YBCO layers isolated in a PrBCO matrix are ∼19 K, ∼54 K, ∼71 K, ∼80 K, and ∼87 K, respectively. Single-cell-thick YBCO layers are found to be superconducting even when separated by ∼19 nm in a PrBCO matrix. These results are discussed in terms of possible Josephson and/or proximity effects coupling the YBCO layers, and the possibility that PrBCO modifies the electronic structure and depresses Tco in YBCO cells that are immediately adjacent to the PrBCO layers. Finally, high-temperature postannealing studies show that these superlattice structures are stable and that little diffusion occurs along the c-axis direction of compositional modulation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lowndes, D. H., Norton, D. P., and Budai, J. D., submitted for publication in Physical Review Letters.Google Scholar
2. Triscone, J.-M., Fischer, O., Brunner, O., Antognazza, L., Kent, A. D., and Karkut, M. G., Phys. Rev. Lett. 64, 804 (1990).Google Scholar
3. Okai, B., Kosuge, M., Nozaki, H., Takahashi, K., and Ohta, M., Jpn. J. Appl. Phys. 27, L41 (1988).Google Scholar
4. Peng, J. L., Klavins, P., Shelton, R. N., Radousky, H. D., Hahn, P. A., and Bernardez, L., Phys. Rev. B 40, 4517 (1989).Google Scholar
5. Poppe, U., Prieto, P., Schubert, J., Soltner, H., Urban, K., and Buchal, Ch., Solid State Commun. 71, 569 (1989).Google Scholar
6. Triscone, J. M., Karkut, M. G., Antognazza, L., Brunner, O., and Fischer, O., Phys. Rev. Lett. 63, 1016 (1989).Google Scholar
7. Venkatesan, T., Inam, A., Dutta, B., Ramesh, R., Hegde, M. S., Wu, X. D., Nazar, L., Chang, C. C., Barner, J. B., Hwang, D. M., and Rogers, C. T., Appl. Phys. Left. 56, 391 (1990).Google Scholar
8. Wu, X. D., Xi, X. X., Li, Q., Inam, A., Dutta, B., DiDomenico, L., Weiss, C., Martinez, J. A., Wilkens, B. J., Schwarz, S. A., Barner, J. B., Chang, C. C., Nazar, L., and Venkatesan, T., Appl. Phys. Lett. 56, 400 (1990).Google Scholar
9. Lowndes, D. H., Norton, D. P., McCamy, J. W., Feenstra, R., Budai, J. D., Christen, D. K., Jones, E., and Poker, D., in High-Temperature Superconductors: Fundamental Properties and Novel Materials, ed. by Christen, D., Chu, P., Narayan, J., and Schneemeyer, L., Materials Research Society, Pittsburgh, Pennsylvania (in press).Google Scholar
10. Schuller, I. K., Phys. Rev. Lett. 44, 1597 (1980).Google Scholar
11. Rogers, C. T., Inam, A., Hegde, M. S., Dutta, B., Wu, X. D., and Venkatesan, T., Appl. Phys. Lett. 55, 2032 (1989).Google Scholar
12. Moreland, J., Ono, R. H., Beall, J. A., Madden, M., and Nelson, A. J., Appl. Phys. Lett. 54, 1477 (1989).Google Scholar
13. Pennycook, S. J. and Jesson, D. E., Phys. Rev. Lett. 64, 938 (1990).Google Scholar
14. Pennycook, S. J., Chisholm, M. F., Jesson, D. E., Norton, D. P., McCamy, J. W., and Lowndes, D. H., Proc. Mat. Res. Soc. Symp. 169 (in press).Google Scholar