Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-16T17:49:41.786Z Has data issue: false hasContentIssue false

Suppression of Acceptor Deactivation in Siucon by Disordered Surface Regions

Published online by Cambridge University Press:  21 February 2011

K Srikanth
Affiliation:
Center for Electronic Materials & Processing and Department of Engineering Science & Mechanics, The Pennsylvania State University, University Park, PA 16802
S. Ashok
Affiliation:
Center for Electronic Materials & Processing and Department of Engineering Science & Mechanics, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

Permeation of atomic hydrogen in p-type Si damaged with ion implantation or deposited with polycrystalline or amorphous Si has been studied. Following ion implantation or film deposition, atomic hydrogen was introduced by low energy H ion implantation or from an electron cyclotron resonance (ECR) plasma. Spreading resistance profiles indicate that deactivation of acceptor dopant boron atoms by atomic hydrogen is drastically reduced in silicon wafers with any of the above disordered surface layers, and secondary ion mass spectroscopy (SIMS) traces this reduction to the suppression of hydrogen movement into the crystalline Si substrate. Trapping of hydrogen or formation of molecular hydrogen at defect sites in the surface disordered regions apparently is responsible for this phenomenon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sah, C. T., Sun, J. Y., and Tzan, J. J., Appi. Phys. Lett. 43, 203 (1983).Google Scholar
2. Pearton, S. J., Corbett, J. W., and Shi, T. S., Appi. Phys. A 43, 153 (1987).Google Scholar
3. Johnson, N. M., Phys. Rev. B 31, 5525 (1985).Google Scholar
4. Horn, M.W., Heddleson, J.M. and Fonash, S.J., Appi. Phys. Lett. 51, 490 (1987).Google Scholar
5. Jaworowski, A.E., Radiation Effects and Defects in Solids 110, (1989).Google Scholar
6. Pankove, J. I., Magee, C. W. and Wance, R. O., Appi. Phys. Lett. 47, 748 (1985).Google Scholar
7. Chien, H.-C., Ashok, S. and Chen, M.-C., Jap.J. of Appl. Phys. 27, L1317 (1988).Google Scholar
8. Zundel, T., Mesli, A., Muller, J. C. and Siffert, P., Appl. Phys. A 48, 31 (1989).Google Scholar
9. Seager, C.H., Anderson, R.A. and Panitz, J.K.G., J. Mat. Res. 2, 96 (1987).Google Scholar
10. Ashok, S. and Giewont, K., Jap. J. of Appl. Phys. 24, L533 (1985).Google Scholar
11. Tavendale, A. J., William, A. A., Alexiev, D. and Pearton, S. J., in Oxygen, Carbon, Hydrogen and Nitrogen in Silicon, edited by Mikkelson, J.C. jr., Pearton, S.J., Corbett, J.W. and Pennycock, S.J. (Materials Research Society, Pittsburgh, 1986), p.460.Google Scholar
12. Pankove, J. I., Wance, R. O. and Berkeyheiser, J. E., Appl. Phy. Lett. 45, 1100 (1984).Google Scholar
13. Chien, H.-C. and Ashok, S., J. Appl. Phys. 60, 2886 (1986).Google Scholar
14. Dube, C., Hanoka, J. I. and Sandstrom, S. B., Appl. Phys. Lett. 44, 425 (1984).Google Scholar