Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T16:15:35.248Z Has data issue: false hasContentIssue false

Surface Microstructural Evolution of Ultrathin films by Real time Spectroscopic Elupsometry

Published online by Cambridge University Press:  21 February 2011

R. W. Collins
Affiliation:
The Pennsylvania State University, Department of Physics and Materials Research Laboratory, University Park, PA 16802.
Ilsinan An
Affiliation:
The Pennsylvania State University, Department of Physics and Materials Research Laboratory, University Park, PA 16802.
Y. M. Li
Affiliation:
The Pennsylvania State University, Department of Physics and Materials Research Laboratory, University Park, PA 16802.
C. R. Wroński
Affiliation:
The Pennsylvania State University, Department of Electrical and Computer Engineering, University Park, PA 16802.
Get access

Abstract

Vapor deposition of smooth, microstructurally uniform amorphous films on dissimilar substrates requires coalescence of clusters that form during initial nucleation. We have developed techniques that provide sub-monolayer sensitivity to this phenomenon, relying on real time spectroscopie ellipsometry observations during ultrathin film growth (thicknesses < 50 Å). An investigation of tetrahedrally-bonded amorphous semiconductors lends insights into the role of nucleation density and adatom surface diffusion in determining the ultimate atomic-scale roughness on the film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] van den Brekel, C.H.J. and Jansen, A.K., J. Cryst. Growth 43, 364 (1978).Google Scholar
[2] Mazor, A., Srolovitz, D.J., Hagan, P.S., and Bukiet, B.G., Phys. Rev. Lett. 60, 424 (1988).Google Scholar
[3] Bales, G.S., Redfield, A.C., and Zangwill, A., Phys. Rev. Lett. 62, 776 (1989).Google Scholar
[4] Karunasiri, R.P.U., Bruinsma, R., and Rudnick, J., Phys. Rev. Lett. 62, 788 (1989).Google Scholar
[5] Cheng, R., Wen, S., Feng, J., and Fritzsche, H., Appl. Phys. Lett. 46, 592 (1985).Google Scholar
[6] Gallagher, A., Mater. Res. Soc. Symp. Proc. 70 3 (1986).Google Scholar
[7] Pashley, D.W., Stowell, M.J., Jacobs, M.H., and Law, T.J., Philos. Mag. 10, 127 (1964).Google Scholar
[8] Hottier, F. and Theeten, J.B., J. Cryst. Growth 48, 644 (1980).Google Scholar
[9] Kim, Y.-T., Collins, R.W., and Vedam, K., Surf. Sci. 222, 341 (1990).Google Scholar
[10] An, I., Nguyen, H.V., Nguyen, N.V., and Collins, R.W., Phys. Rev. Lett. 65, 2274 (1990); J. Vac. Sci. Technol. A 2, 632 (1991).Google Scholar
[11] Aspnes, D.E., Proc. Soc. Photo-Opt. Instrum. Eng. 276, 188 (1981).Google Scholar
[12] Collins, R.W., in Amorphous Silicon and Related Materials, edited by Fritzsche, H. (World Scientific, Singapore, 1988) p. 1003.Google Scholar
[13] Antoine, A.M. and Drevillon, B., J. Appl. Phys. 63, 360 (1988).Google Scholar
[14] Collins, R.W. and Yang, B.-Y., J. Vac. Sci. Technol. B 2, 1155 (1989).Google Scholar
[15] Toyoshima, Y., Arai, K., Matsuda, A., and Tanaka, K., Appl. Phys. Lett. 56, 1540 (1990).Google Scholar
[16] Mui, K. and Smith, F.W., Phys. Rev. B 38, 10623 (1988).Google Scholar
[17] For a-Si on thermally oxidized c-Si, the two-layer model provides an improvement over the one-layer model for t<tb owing to resolvable near-substrate monolayer filling (see Ref. 10).Google Scholar