Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-08T18:08:00.889Z Has data issue: false hasContentIssue false

Synthesis of CoFe2O4 Nanoparticles via the Ferrihydrite Route

Published online by Cambridge University Press:  18 March 2011

A. Manivannan
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506-6315
A. M. Constantinescu
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506-6315
M. S. Seehra
Affiliation:
Physics Department, West Virginia University, Morgantown, WV 26506-6315
Get access

Abstract

Nanoparticles of CoFe2O4 in the size range of 5 nm to 36 nm have been synthesized by first producing two-line Co-doped ferrihydrite and annealing it at temperatures between 573 and 1073 K. Co-doped ferrihydrite is produced by reacting appropriate amounts of FeCl3/CoCl2 solutions with NH4OH at pH = 7. Thermogravimetric measurements provide evidence for the ferrihydrite to CoFe2O4 conversion between 500 and 700 K and x-ray diffraction is used to confirm the transformation to CoFeO4 and determine the particle size. The lattice constant increases initially with the increase in particle size approaching a constant value above 20 nm. The measured Tc equals 788 K for the 36 nm particles. Measurements of magnetization as a function of temperature and magnetic field confirm that the precursor Co-ferrihydrite is a superparamagnet with T ≃ 40 K, whereas for the 30 nm CoFe2O4, the coercivity Hc ≃ 7 kOe at 20 K, decreasing to Hc ≃ 800 Oe with Ms ≃ 60 emu/g at 300 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Magnetic Properties of Fine Particles edited by J. L. Dormann and Fiorani, D. (Elsevier Science, Amsterdam 1992); See also the recent review by R. H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999).Google Scholar
2. Nanophase Materials: Synthesis, Properties and Applications, edited by Hadjipayanis, G. C. and Siegel, R. W. (Kluwer, 1994).Google Scholar
3. Cheng, F., Peng, Z., Liao, C., Xu, Z., Gao, S., Yan, C., Wang, D. and Wang, J., Solid St. Commun. 107, 471 (1998).Google Scholar
4. Rondinone, A. J., Samia, A. C. S. and Zhang, Z. J., J. Phys. Chem. B 103, 6876 (1999).Google Scholar
5. Li, S., John, V. T., O'Conner, C., Harris, V. and Carpenter, E., J. Appl. Phys. 87, 6223 (2000).Google Scholar
6. Pillai, V. and Shah, D. O., J. Magn. Magn. Mater. 163, 243 (1996).Google Scholar
7. Ngo, A. T., Bonville, P. and Pileni, M. P., Eur. Phys. J. B 9, 583 (1999).Google Scholar
8. Uzunova, E., Klissurski, D., Mitov, I. and Stefanov, P., Chem. Mater. 5, 576 (1993).Google Scholar
9. Masheva, V., Grigorova, M., Volkov, N., Blythe, H. J., Midlarz, T., Blaskov, V., Geshev, J. and Mikhov, M., J. Magn. Magn. Mater. 196–197, 128 (1999).Google Scholar
10. Grigorova, M., Blythe, H. J., Blaskov, V., Rusanov, V., Petkov, V., Masheva, V., Nihtianova, D., Martinez, L. M., Munoz, J. S., and Mikhov, M., J. Magn. Magn. Mater. 183, 163 (1998).Google Scholar
11. Zhao, Z., Huggins, F. E., Feng, Z. and Huffman, G. P., Phys. Rev. B 54, 3403 (1996).Google Scholar
12. Seehra, M. S., Babu, V. S., Manivannan, A. and Lynn, J. W., Phys. Rev. B 61, 3513 (2000).Google Scholar
13. Ibrahim, M. M., Edwards, G., Seehra, M. S., Ganguly, B. and Huffman, G. P., J. Appl. Phys. 75, 5873 (1994).Google Scholar
14. Zhao, J., Huggins, F. E., Feng, Z., Lu, F., Shah, N. and Huffman, G. P., J. Catal. 143, 499 (1993).Google Scholar
15. X-Ray Diffraction Procedures by H. P. Klug and Alexander, L. E. (John Wiley, NY 1974) page 687.Google Scholar
16. Ibrahim, M. M., Zhao, J. and Seehra, M. S., J. Mater. Res. 7, 1856 (1992).Google Scholar
17. Makhlouf, S. A., Parker, F. T. and Berkowitz, A. E., Phy. Rev. B, 55, R14717 (1997).Google Scholar