Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-10T14:45:35.837Z Has data issue: false hasContentIssue false

Synthesis of Inorganic Polymer-Ceramic Molecular Composites

Published online by Cambridge University Press:  25 February 2011

William D. Samuels
Affiliation:
Pacific Northwest Laboratory, Richland, WA 99352
Gregory J. Exarhos
Affiliation:
Pacific Northwest Laboratory, Richland, WA 99352
Sarah D. Burton
Affiliation:
Pacific Northwest Laboratory, Richland, WA 99352
Get access

Abstract

The logical development of thermally stable polymers is based upon forming true molecular composites comprised of both polymer and ceramic components. This paper describes our initial studies on the synthesis of composite materials that are expected to produce films with thermal stability to 500°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Exarhos, G.J., Ferris, K.F., Friedrich, D.M., Samuels, W.D., in Atomic and Molecular Processing of Electronic and Ceramic Materials:Preparation. Properties, and Characterization, (Materials Research Society Proc., Pittsburgh, PA, pp127134(1988).Google Scholar
2. Exarhos, G.J., Ferris, K.F., Friedrich, D.M., and Samuels, W.D., J. Am. Cer. Soc., L1[9], C406–C407(1988).Google Scholar
3. Allcock, H.R., Phosphorous-Nitrogen Compounds. Cyclic. Linear, and High Polymeric Systems, Academic Press, New York, 1972, and the approximately 250 articles that he has published. on the subject.Google Scholar
4. Lee, M.S.K., Gray, G.W., Lacey, D., and Toyne, K.J., Makromol. Chem. Rapid Commun., 18, 10(1989).Google Scholar
5. Allcock, H.R., Brennan, D.J., and Allen, R.W., Macromolecules, 18, 139144(1985).Google Scholar
6. Wisian-Neilson, P. and Islam, M.S., Macromolecules, 2, 20262028(1989).CrossRefGoogle Scholar
7. Rose, S.H. and Reynard, K.A., U. S. Patent No. 3 702 833(14 November 1972).Google Scholar
8. Hergenrother, W.L. and Halasa, A.F, U.S. Patent No. 4 218 556(19 August 1980).Google Scholar
9. Allcock, H.R., Coggio, W.D., Archibald, R.S., and Brennen, D.J., Macromolecules, 22, 35713578(1989).Google Scholar
10. Allcock, H.R, Brennan, D.J, Graaskamp, J.M, and Parvez, M., Organometallics, 1 24342446(1986).CrossRefGoogle Scholar
11. Allcock, H.R., Brennan, D.J., Dunn, B.S., and Parvez, M., Inorg. Chem., 27, 32263233(1988).CrossRefGoogle Scholar
12. Brennan, D.J., Grasskamp, J.M., Dunn, B.S., and Allock, H.R., Inorg. Syn., 25,6068(1989).Google Scholar
13. Allcock, H.R., Brennan, D.J., and Grasskamp, J.M., Macromolecules, 21, 110(1988), ibid., 22, 1534–1539(1989).Google Scholar
14. unpublished results.Google Scholar
15. Allcock, H.R. and Coggio, W.D., Macromolecules, 23, 16261635(1990).Google Scholar
16. Puyenbroek, R., Jekel, A.P., and Grampcl, J.C. van de, Journal of Inorganic and Organometallic Polymers, 1, 105(1991).CrossRefGoogle Scholar
17. Schmutz, J.L. and Allcock, H.R., Inorg. Chem., 14, 24332438(1975).Google Scholar