Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-16T03:07:52.028Z Has data issue: false hasContentIssue false

Synthesis of Inorganic-Organic Hybrids from Metal Alkoxides and Silanol-Terminated Polydimethylsiloxane

Published online by Cambridge University Press:  10 February 2011

Shingo Katayama
Affiliation:
Nippon Steel Corporation, Advanced Technology Research Laboratories, 1618, Ida, Nakahara-Ku, Kawasaki 211, Japan, singok@lab1.nsc.co.jp
Ikuko Yoshinaga
Affiliation:
Nippon Steel Corporation, Advanced Technology Research Laboratories, 1618, Ida, Nakahara-Ku, Kawasaki 211, Japan, singok@lab1.nsc.co.jp
Noriko Yamada
Affiliation:
Nippon Steel Corporation, Advanced Technology Research Laboratories, 1618, Ida, Nakahara-Ku, Kawasaki 211, Japan, singok@lab1.nsc.co.jp
Get access

Abstract

Inorganic-organic hybrids have been synthesized by reaction of Ti(OC2H5)4 and Ta(OC2H5)5 with silanol-terminated polydimethylsiloxane (PDMS). The chemical modification of the metal alkoxides with ethyl acetoacetate (EAcAc) was carried out in order to obtain a transparent and uniform hybrid. The hydrolysis behavior of Ti(OC2H5)4 modified with EAcAc in the presence of PDMS and the formation of the Ti-O-Si bond in a Ti-O-PDMS hybrid were revealed by FT-IR experiments. Dynamic mechanical measurements showed that a Ta-O-PDMS hybrid was harder than a Ti-O-PDMS hybrid, indicating the effect of metal on the storage modulus of hybrids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Philipp, G. and Schmidt, H., J. Non-Cryst. Solids 63, 283 (1984).Google Scholar
2. Schmidt, H., J. Non-Cryst. Solids 73, 681 (1985).Google Scholar
3. Wilkes, G. L., Orler, B. and Huang, H., Polym. Prep. 26, 300 (1985).Google Scholar
4. Huang, H., Orler, B. and Wilkes, G. L., Polym. Bull. 14, 557 (1985).Google Scholar
5. Huang, H., Orler, B. and Wilkes, G. L., Macromolecules 20, 1322 (1987).Google Scholar
6. Mackenzie, J. D., Chung, Y. J. and Hu, Y., J. Non-Cryst. Solids 147&148, 271 (1992).Google Scholar
7. Parkhurst, C. S., Doyle, W. F., Silverman, L. A., Singh, S., Andersen, M. P., McClurg, D., Wnek, G. E. and Uhlmann, D. R., Mat. Res. Soc. Symp. Proc. 73, 769 (1986).Google Scholar
8. Glaser, R. H. and Wilkes, G. L., Polym. Bull. 19, 51 (1988).Google Scholar
9. Schutte, C. L., Fox, J. R., Boyer, R. D. and Uhlmann, D. R., in Ultrastructure Processing of Advanced Materials, edited by Uhhnann, D. R. and Ulrich, D. R. (John Willy & Sons, New York, 1992) p. 95.Google Scholar
10. Joardar, S. S., Jones, M. A. and Ward, T. C., Polym. Mater. Sci. Eng. 67, 254 (1992).Google Scholar
11. Livage, J., Henry, M. and Sanchez, C., in Progress in Solid State Chemistry, 18, 259 (1988).Google Scholar
12. Sanchez, C., Livage, J., Henry, M. and Babonneau, F., J. Non-Cryst. Solids 100, 65 (1988).Google Scholar
13. Bradley, D. C., Mehrotra, R. C. and Gaur, D. P., in Metal Alkoxides (Academic Press, London, 1978) p. 209.Google Scholar
14. Bradley, D. C., Mehrotra, R. C. and Gaur, D. P., in Metal Alkoxides (Academic Press, London, 1978) p. 95.Google Scholar
15. Uchihashi, H., Tohge, N. and Minami, T., Seramikkusu Ronbunshi 97, 396 (1989).Google Scholar
16. Sanchez, C., Babonneau, F., Doeuff, S. and Leaustic, A., in Ultrastructure Processing of Advanced Materials, edited by Mackenzie, J. D. and Ulrich, D. R. (John Willy & Sons, New York, 1988) p.77.Google Scholar
17. Liu, Z. and Davis, R. J., J. Phys. Chem. 98, 1253 (1994).Google Scholar