Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-15T18:11:20.348Z Has data issue: false hasContentIssue false

Synthesis of New Chalcogenide Materials. The Novel One-Dimensional Semiconductor K4 Ti3 S14

Published online by Cambridge University Press:  25 February 2011

Steven A. Sunshine
Affiliation:
Northwestern University, Department of Chemistry, Evanston, Illinois 60201
Doris Kang
Affiliation:
Northwestern University, Department of Chemistry, Evanston, Illinois 60201
James A. Ibers
Affiliation:
Northwestern University, Department of Chemistry, Evanston, Illinois 60201
Get access

Abstract

The use of A2 Q/Q melts (A - alkali metal, Q - S or Se) for the synthesis of new one-dimensional solid-state materials is found to be of general utility and is illustrated here for the synthesis of K4 Ti3 SI4. Reaction of Ti metal with a K2 S/S melt at 375°C for 50 h affords K4 Ti3 SI4. The structure possesses one-dimensional chains of seven and eightcoordinate Ti atoms with each chain isolated from all others by surrounding K atoms. There are six S-S pairs (dave - 2.069(3) Å) so that the compound is one of TiIV and may be described as K4 [Ti3 (S)2 (S2)6]. Electrical conductivity measurements indicate that this material is a semiconductor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ternary Compounds. 1977, edited by Holah, G. D., (Whitefriars Press Ltd., Kent, England, 1977).Google Scholar
2. Scheel, H. J., J. Crys. Growth 24, 669673 (1974).Google Scholar
3. Kang, D. and Ibers, J. A., unpublished results.Google Scholar
4. Waters, J. M. and Ibers, J. A., Inorg. Chem. 16, 32733277 (1977).Google Scholar
5. (a) Jeannin, Y. and Bénard, J., Compt. Rend. 246, 614617 (1958). (b) S. Furuseth, L. Brattås, A. Kjekshus, Acta Chem. Scand. A29, 623–631 (1975).Google Scholar
6. Hahn, H. and Harder, B., Z. Anorg. Allg. Chem. 288, 257259 (1956).Google Scholar
7. Huster, J., Z. Naturforsch. 35B, 775 (1980).Google Scholar
8. Hahn, H. and Harder, B., Z. Anorg. Allg. Chem. 288, 241256 (1956).Google Scholar
9. Meerschaut, A., Guémas, L., Berger, R., Rouxel, J., Acta Crystallogr. B35, 17471750 (1979).Google Scholar
10. Sunshine, S. A. and Ibers, J. A., Acta Crystallogr., in press.Google Scholar
11. Büssem, W., Fischer, H., Gruner, E., Naturwissenschaften 23, 740 (1935).Google Scholar
12. Boon, J. W. and MacGillavry, C. H., Recl. Tray. Chim. Pays-Bas. 61, 910920 (1942).Google Scholar
13. Crystal Chemistry and Properties of Materials with Quasi-One-Dimensional Structures, edited by Rouxel, J. (D. Reidel Publishing Co., Dordrecht, 1986).Google Scholar
14. Rijnsdorp, J., de Lange, G. J., Wiegers, G. A., J. Solid State Chem. 30, 365373 (1979).Google Scholar
15. Chianelli, R. R. and Dines, M. B., Inorg. Chem. 17, 27582762 (1978).Google Scholar
16. Perrin, C., Perrin, A., Prigent, J., Bull. Soc. Chim. Fr. 3086–3091 (1972).Google Scholar
17. Müller, A., Sarkar, S., Bhattacharyya, R. G., Pohl, S., Dartmann, M., Angew. Chem. Int. Ed. Engl. 17, 535 (1978).Google Scholar