Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-15T10:22:16.828Z Has data issue: false hasContentIssue false

Tem of Dislocations in Sapphire (α−Al2O3)

Published online by Cambridge University Press:  21 February 2011

K.P.D. Lagerlöf
Affiliation:
Department of Metallurgy and Material Science Case Western Reserve University Cleveland, Ohio 44106
T.E. Mitchell
Affiliation:
Department of Metallurgy and Material Science Case Western Reserve University Cleveland, Ohio 44106
A.H. Heuer
Affiliation:
Department of Metallurgy and Material Science Case Western Reserve University Cleveland, Ohio 44106
Get access

Abstract

Dissociation of both basal and prism plane dislocations in sapphire,α−Al2O3,is common and the partial dislocations can be imaged using conventional transmission electron microscopy and weak beam dark field imaging techniques. At elevated temperatures the dissociation takes place by conservative self-climb, a process involving short range diffusion, whereas at low temperatures the dissociation can occur by glide. Dissociation of a dislocation can in some situations give rise to very strong contrast when using g vectors for which g→.b→=0 for the undissociated dislocation. Those contrast conditions can be used to obtain information about the dislocation morphology and the stacking fault energy of the fault plane through determination of the separation distance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wachtman, J.B. and Maxwell, L.H., J. Am. Cer. Soc. 40, 377 (1957).CrossRefGoogle Scholar
2. Kronberg, M.L., J. Am. Cer. Soc. 45, 274 (1962).Google Scholar
3. Scheuplein, R. and Gibbs, P., J. Am. Cer. Soc. 43, 458 (1960).CrossRefGoogle Scholar
4. Tressler, R.E. and Barber, D.J., J. Am. Cer. Soc. 57, 13 (1974).Google Scholar
5. Snow, J.D. and Heuer, A.H., J. Am. Cer. Soc. 56, 156 (1973).Google Scholar
6. Pletka, B.J., Mitchell, T.E., and Heuer, A.H., J. Am. Cer. Soc. 57, 388 (1974).Google Scholar
7. Pletka, B.J., Heuer, A.H., and Mitchell, T.E., Acta Met. 25 25 (1977).Google Scholar
8. Pletka, B.J., Mitchell, T.E., and Heuer, A.H., Acta Met. 30, 147 (1982).Google Scholar
9. Cadoz, J., Castaing, J., Phillips, D.S., Heuer, A.H., and Mitchell, T.E., Acta Met. 30, 2205 (1982).Google Scholar
10. Phillips, D.S., Mitchell, T.E., and Heuer, A.H., Phil. Mag. A45, 371 (1982);Google Scholar
10a. Mitchell, T.E., Pletka, B.J., Phillips, D.S. and Heuer, A.H., Phil. Mag. 34, 441 (1971).CrossRefGoogle Scholar
11. Hockey, B.J., J. Am. Cer. Soc. 54, 223 (1971).Google Scholar
12. Kronberg, M.L., Acta Met. 5, 507 (1957).Google Scholar
13. Heuer, A.H., Phil. Mag. 13, 379 (1966).Google Scholar
14. Hockey, B.J., Deformation of Ceramic Materials, Bradt, R.C. and Tressler, R.E., eds, p 167, Plennum Publishing Corp., 1975.Google Scholar
15. Scott, W.D., Deformation of Ceramic Materials, Bradt, R.C. and Tressler, R.E., eds, p 151, Plennum Publiching Corp., 1975.Google Scholar
16. Scott, W.D. and Orr, K.K., J. Am. Cer. Soc. 66, 27 (1983).Google Scholar
17. Cadoz, J., Castaing, J., and Philibert, J., Revue Phys. Appl. 16, 135, (1981).Google Scholar
18. Castaing, J., Cadoz, J., and Kirby, S.H., J. Am. Cer. Soc. 64, 504 (1981).Google Scholar
19. Cockayne, D.J.H., Jenkins, M.L. and Ray, I.L.F., Phil. Mag. 24, 1382 (1971).Google Scholar
20. Lagerlöf, K.P.D., Mitchell, T.E., and Heuer, A.H., to be published.Google Scholar
21. Phillips, D.S., Pletka, B.J., Heuer, A.H., and Mitchell, T.E., Acta Met. 30, 491 (1982).Google Scholar
22. Heuer, A.H. and Castainci, J., Adv. in Ceramics (in press).Google Scholar
23. Cadoz, J. and Pellissia, P., Scripta Met. 10, 597 (1976).Google Scholar
24. Phillips, D.S., Heuer, A.H., and Mitchell, T.E., Phil. Mag. A42, 285 (1980).Google Scholar
25. Cadoz, J., Hokim, D., Meyer, M., and Rivihre, J.P., Rev. Phys. Appl. 12, 473 (1977).CrossRefGoogle Scholar
26. Head, A.K., Humble, P., Clarebrough, L.M., Morton, A.J., and Forword, C.T., Computed Electron Micrographs and Defect Identification, North Holland, Amsterdam, 1973.Google Scholar
27. Lagerlöf, K.P.D., Mitchell, T.E., Heuer, A.H., Riviire, J.P., Cadoz, J., Castaing, J., and Phillips, D.S., Acta Met. 32, 97 (1984).Google Scholar
28. Mitchell, T.E., Donlon, W.T., Lagerlöf, K.P.D., and Heuer, A.H., Plastic Deformation in Ceramic Materials, (in press).Google Scholar
29. Lagerlöf, K.P.D., Pletka, B.J., Mitchell, T.E. and Heuer, A.H. Rad. Eff. 74, 87 (1983).CrossRefGoogle Scholar
30. Lagerlöf, K.P.D., Mitchell, T.E., Heuer, A.H., and Castaing, J., to be published.Google Scholar
31. Cowley, J.M. and Iijima, S., Physics Today 30, 32 (1977).Google Scholar