Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-16T13:14:24.456Z Has data issue: false hasContentIssue false

Tem Study of Dislocations in Plastically Deformed AlN

Published online by Cambridge University Press:  25 February 2011

V. Audurier
Affiliation:
Laboratoire de Métallurgie Physique, U.R.A. 131 CNRS Faculté des Sciences 86022 Poitiers Cedex, France
J. L. Demenet
Affiliation:
Laboratoire de Métallurgie Physique, U.R.A. 131 CNRS Faculté des Sciences 86022 Poitiers Cedex, France
J. Rabier
Affiliation:
Laboratoire de Métallurgie Physique, U.R.A. 131 CNRS Faculté des Sciences 86022 Poitiers Cedex, France
Get access

Abstract

AlN ceramics were plastically deformed using uniaxial compression under hydrostatic pressure between room temperature (RT) and 800°C. Deformation microstructures have been studied by Transmission Electron Microscopy (TEM) using the weak beam technique. The deformation substructure at RT is characterized by perfect glide loops with 1/3<1120> Burgers vector in (0001) elongated in the screw direction. When deformation temperature increases, the screw character is associated to cross slip events and dislocation dipolesare found. In the investigated temperature range, slip of dislocations with 1/3<1120> Burgers vector is also evidenced on prismatic planes. Weak beam observations failed to evidence any dislocation splitting. Some of these dislocation properties, similar to those of III-V compound semiconductors, suggest that electronic doping effects could be used to control plastic behaviour of covalent ceramics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Slack, G. A., J. Phys. Chem. Sol., 34, 321 (1973).CrossRefGoogle Scholar
2. Werdecker, W. and Aldinger, F., IEEE Trans, on components and manufacturing technology CHMTH7, 4, 399 (1984).Google Scholar
3. Denanot, M. F., Delafond, J. and Grilhé, J., Rad. Effects, 88, 145 (1986).Google Scholar
4. Heard, H. C. and Cline, C. F., J. of Mater. Sci., 15, 1889 (1980).Google Scholar
5. Hoenig, C. L. and Yust, C. S., Ceramic Bulletin, 60, 1175 (1981).Google Scholar
6. Beauchamp, E. K., Graham, R. A. and Carr, M. J. in Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by Crawford, J. H. Jr, Chen, Y., Sibley, W. A. (Mat. Res. Soc. Symp. Proc, 24, 1984) pp. 281289.Google Scholar
7. Denanot, M. F. and Rabier, J., Inst. Phys. Conf. Ser., 100, 439 (1989).Google Scholar
8. Denanot, M. F. and Rabier, J., J. of Mater. Sci., 24, 1594 (1989).Google Scholar
9. Denanot, M. F. and Rabier, J., Mat. Sci. and Eng. A, 109, 157 (1989).Google Scholar
10. Veyssière, P., Rabier, J., Jaulin, M., Demenet, J. L. and Castaing, J., Rev. Phys. Appl., 20, 805 (1985).CrossRefGoogle Scholar
11. Boivin, P., Rabier, J. and Garem, H., Phil. Mag. A, 61, 647 (1990).Google Scholar
12. Gail, P., Peyrade, J. P., Coquillé, R., Reynaud, F., Gabillet, S. and Albacete, A., Acta Met., 35, 143 (1987).Google Scholar
13. Omri, M., thesis, I.N.P.L. Nancy, 1987.Google Scholar
14. Alexander, H., in Dislocations in Solids. 7, edited by Nabarro, F. R. N. (Elsevier Science Publishers, 1986) p. 113.Google Scholar
15. Delavignette, P., Kirkpatrick, H. B. and Amelinckx, S., J. Appl. Phys., 32, 1098 (1961).Google Scholar