Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-17T10:29:29.072Z Has data issue: false hasContentIssue false

A Tem Study of the Metakaolin-to-Mullite Transformation in Kaolinite

Published online by Cambridge University Press:  21 February 2011

J.A. Horner
Affiliation:
Rutgers University, College of Engineering, Department of Ceramics, P. O. Box 909, Piscataway, NJ 08854
W.A. Martinez
Affiliation:
Rutgers University, College of Engineering, Department of Ceramics, P. O. Box 909, Piscataway, NJ 08854
V.A. Greenhut
Affiliation:
Rutgers University, College of Engineering, Department of Ceramics, P. O. Box 909, Piscataway, NJ 08854
Get access

Abstract

Two different kaolinites were heated in the range 850–1000°C and subsequently analyzed using TEM to study the metakaolinite-to-mullite reaction sequence. Metakaolinite was found to exist as amorphous relics of the original kaolinites. Small particles of a spinel composition appeared and grew to a maximum size of ∼50Å at temperatures below the 980°C exothermic reaction. Mullite was detected at and above 980°C which accounts for the 980°C exothermic reaction of these kaolinites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brindley, G.W. and Nakahira, M., J. Am. Ceram. Soc. 42, 311–18 (1959).Google Scholar
2. Charaborty, A.K. and Ghosh, D.K, J. Am. Ceram. Soc. 61, 170–73 (1978).Google Scholar
3. Insley, H. and Ewell, R.H., J. Res. Nat. Bur. Stand. 14, 615626 (1935).Google Scholar
4. Colegrave, E.B. and Rigby, G.R, Trans. Brit. Ceram. Soc. 51, 355–67 (1952).Google Scholar
5. Percival, H.J., Duncan, J.F., and Foster, P.K., J. Am. Ceram. Soc. 57, 5761 (1974).Google Scholar
6. Lemaitre, J., Leonard, A.D., and Delmon, B. in: Proceedings of the International Clay Conference, (Applied Publishing Ltd. 1975) pp. 545552.Google Scholar
7. Bulens, M. and Delmon, B., Clays and Clay Min. 25, 271–77 (1977).Google Scholar
8. Glass, H., Amer. Min. 39, 193207 (1954).Google Scholar
9. Roy, R., Roy, D.M., and Francis, E.E., J. Am. Ceram. Soc. 38, 198205 (1955).Google Scholar
10. Prabhakaram, P., Trans. Brit. Ceram. Soc. 67, 105124 (1963).Google Scholar
11. Nicholson, P.S. and Fulrath, R.M, J. Am. Ceram. Soc. 53, 237240 (1970).Google Scholar
12. Comer, J.J., J. Am. Ceram. Soc. 44, 561563 (1961).Google Scholar
13. Tzuzuki, Y., J. Earth Sci. 9, 305344 (1961).Google Scholar
14. McConnell, J.D.C. and Fleet, S.G., Clay Minerals 8, 279290 (1970).Google Scholar
15. Gani, M.S.J. and McPherson, R., J. Mat. Sci. 12, 9971009 (1977).Google Scholar
16. Ohlberg, S.M., Hammel, J.J., and Golob, H.R., J. Am. Ceram. Soc. 48, 178180 (1965).Google Scholar
17. Ohlberg, S.M., Golob, H.R., Hammel, J.J., and Lewchuk, R.R., J. Am. Ceram. Soc. 48, 331332 (1965).Google Scholar
18. Hammel, J.J. and Ohlberg, S.M, J. App. Phys. 36, 14421447 (1965).Google Scholar
19. Lee, D. and McPherson, R., J. Mat. Sci. 15, 2530 (1980).Google Scholar
20. Risbud, S.H. and Pask, J. A., J. Am. Ceram. Soc. 60, 418–24 (1977).Google Scholar
21. Moya, J., private communication.Google Scholar