Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T18:24:18.985Z Has data issue: false hasContentIssue false

Temperature dependences of channel mobility and threshold voltage in 4H- and 6H-SiC MOSFETs

Published online by Cambridge University Press:  21 March 2011

S. Harada
Affiliation:
Ultra-low-loss power device technology research body Electrotechnical laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki, Japan
R. Kosugi
Affiliation:
Ultra-low-loss power device technology research body Electrotechnical laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki, Japan
J. Senzaki
Affiliation:
Ultra-low-loss power device technology research body Electrotechnical laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki, Japan
S. Suzuki
Affiliation:
Ultra-low-loss power device technology research body R&D association for future electron devices
W. J. Cho
Affiliation:
Ultra-low-loss power device technology research body Electrotechnical laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki, Japan
K. Fukuda
Affiliation:
Ultra-low-loss power device technology research body Electrotechnical laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki, Japan
K. Arai
Affiliation:
Ultra-low-loss power device technology research body Electrotechnical laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki, Japan
Get access

Abstract

We have investigated the effect of polytype and oxidation condition on the temperature dependence of channel mobility and threshold voltage in 4H- and 6H-SiC MOSFETs. The behaviors of the channel mobility are apparently different for 4H- and 6H-SiC MOSFETs. In contrast to the polytype effect, dry and wet oxidation samples have almost similar channel mobilities. The variation of the threshold voltage with temperature is proportional to the number of the interface states near the conduction band extracted from n-type MOS capacitors. Therefore, we argue that the distribution of the interface states near the conduction band in p-type SiC MOS structure can be represented by that in n-type SiC MOS structure. Although the oxidation condition varies the distribution of the interface states in the energy range between 0.2 and 0.4 eV from the conduction band, it has little influence on the channel mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Schorner, R., Friedrichs, P., Peters, D., and Stephani, D., IEEE Electron Dev. Lett. 20, 241 (1999).Google Scholar
(2) Yano, H., Kimoto, T., Matsunami, H., Bassler, M., and Pensl, G., Mater. Sci. Forum 338–342, 1109 (2000).Google Scholar
(3) Afanasev, V. V., Bassler, M., Pensl, G., and Schulz, M., Phys. Status Solidi A 162, 321 (1997).Google Scholar
(4) Schorner, R., Friedrichs, P., and Peters, D., IEEE Trans. Electron Devices 46, 533 (1999).Google Scholar
(5) Saks, N. S., Mani, S. S., and Agarwal, K., Appl. Phys. Lett. 76, 2250 (2000).Google Scholar
(6) Das, M. K., Um, B. S. and Cooper, J. A., JR., Mat. Sci. Forum 338–342, 1069 (2000).Google Scholar
(7) Lipkin, L. A. and Palmour, J. W., Mater. Sci. Forum 338–342, 1093 (2000).Google Scholar
(8) Yano, H., Hirao, T., Kimoto, T., Matsunami, H., Asano, K. and Sugawara, Y., Mat. Sci. Forum 338–342, 1105 (2000).Google Scholar
(9) Sridevan, S. and Baliga, B. J., Mat. Sci. Forum 264–268, 997 (1998).Google Scholar
(10) Troffer, T., Schadt, M., Frank, T., Itoh, H., Pensl, G., Heindl, J., Strunk, H. P. and Maier, M., Phys. Status. Solidi A 162, 277 (1997).Google Scholar