Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-24T02:10:15.923Z Has data issue: false hasContentIssue false

Temperature-Dependent Studies of a-SiC:H Growth by Remote Plasma CVD Using Methylsilanes

Published online by Cambridge University Press:  10 February 2011

Moon-Sook Lee
Affiliation:
Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, stacey.bent@nyu.edu
Pratik Lal
Affiliation:
Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, stacey.bent@nyu.edu
Stacey F. Bent
Affiliation:
Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, stacey.bent@nyu.edu
Get access

Abstract

Thin hydrogenated amorphous silicon carbide (a-SiC:H) films were grown at substrate temperatures ranging from 200 K to 600 K by remote ECR plasma-enhanced CVD. Mono- and trimethylsilane were used as single source precursors. The films grown using both precursors were compared as a function of temperature by in situ multiple internal reflection Fourier transform infrared (MIR-FTIR) spectroscopy. The difference in growth temperature leads to changes in both the hydrogen content and the composition of the film. At low growth temperature, films incorporate high concentrations of intact methyl group and a mixture of SiHx (x=1–3) groups, with a polysilane-like structure. At higher temperatures, the hydrogen content decreases. This decrease is observed in two different ways: (1) a loss of highly hydrogenated SiHx groups (SiH3 or SiH2); and (2) a shift from methyl groups to CH2 and CH bonding. However, the temperature dependence of each functional group is found to be different for the two precursors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Luft, W. and Tsuo, Y. S., Hydrogenated Amorphous Silicon Alloy Deposition Processes, Vol. 1 (Marcel Dekker, Inc., New York, 1993).Google Scholar
2. Furukawa, S., in Amorphous and Crystalline Silicon Carbide and Related Materials, Vol. 34, edited by Harris, G. L. and Yang, C. Y.-W. (Springer-Verlag, Heidelberg, 1987), p. 5865.Google Scholar
3. Hurwitz, F. I., Kacik, T. A., Bu, X.-Y., Masnovi, J., Heimann, P. J., and Beyene, K., J. Mater. Sci. 30, p. 3,130 (1995).Google Scholar
4. Delplancke, M. P., Powers, J. M., Vandentop, G. J., Salmeron, M., and Somorjai, G. A., J. Vac. Sci. Technol. A9, p. 450 (1991).Google Scholar
5. Golecki, I., Reidinger, F., and Marti, J., Appl. Phys. Lett. 60, p. 1,703 (1992).Google Scholar
6. Johnson, A. D., Perrin, J., Mucha, J. A., and Ibbotson, D. E., J. Phys. Chem. 97, p. 12,937 (1993).Google Scholar
7. Solomon, I., Schmidt, M. P., and Tran-Quoc, H., Phys. Rev. B 38, p. 9,895 (1988).Google Scholar
8. Severens, R. J., Van De Sanden, M. C. M., Verhoeven, H. J. M., Bastiaanssen, J., and Schram, D. C., Mat. Res. Soc. Symp. Proc. 420, p. 341 (1996), and references therein.Google Scholar
9. Lee, M.-S. and Bent, S. F., J. Phys. Chem. 101, p. 9,195 (1997), and references therein.Google Scholar
10. Lee, M.-S. and Bent, S. F., J. Vac. Sci. Technol. A, submitted.Google Scholar
11. Efstathiadis, H., Yin, Z., and Smith, F. W., Phys. Rev. B 46, p. 13,119 (1992).Google Scholar
12. Lucovsky, G., Solid State Comunications 29, p. 571 (1979).Google Scholar
13. Kondo, M., Nishimiya, T., Saitoh, K., Ohe, T., and Matsuda, A., Mat. Res. Soc. Symp. Proc, submitted.Google Scholar
14. Meiling, H., Bezemer, J., Schropp, R. E. I., and Van Der Weg, W. F., Mat. Res. Soc. Symp. Proc, submitted.Google Scholar
15. Chiang, C.-M., Gates, S. M., Lee, S. S., Kong, M. J., and Bent, S. F., J. Phys. Chem., in press (1997).Google Scholar