Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-16T12:13:05.339Z Has data issue: false hasContentIssue false

Temperature-Responsive Polymers for Biological Applications

Published online by Cambridge University Press:  01 February 2011

M. Rackaitis
Affiliation:
Materials Science & Engineering Departmrnt, 325-D Steidle Building, The Pennsylvania State University, University Park, PA 16802, U.S.A
E. Manias
Affiliation:
Materials Science & Engineering Departmrnt, 325-D Steidle Building, The Pennsylvania State University, University Park, PA 16802, U.S.A
Get access

Abstract

Water soluble polymers with tunable lower critical solution temperature (LCST) are of increasing interest for biological applications such as cell patterning, smart drug release, DNA sequencing etc. The present study addresses control of the polymer temperature response in water by varying chemical composition of the monomer. In order to achieve this a series of polymers were designed and synthesized based on an ethyleneoxide/ethylene monomer (EO/EE). Polymers were synthesized using polycondensation reactions of difunctional m-EO and n-EE oligomers. The cloud point follows linearly the balance of hydrophobic/hydrophilic interaction and can be tailored in the range of 7 – 70°C by varying the m/n composition and polymer type. Polymer grafting onto the silicon surface exhibits similar solubility behaviour. Adhesion energy measurements show that grafted polymers have solubility cloud points at the temperatures that are close to the ones of the bulk polymer solutions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hatefi, A., Amsden, B., J. Control. Release, 80, 928 (2002).10.1016/S0168-3659(02)00008-1Google Scholar
2. Jeong, B., Choi, Y.K., Bae, Y.H., Zentner, G., Kim, S.W., J. Control. Reslease, 62, 109114 (1999).10.1016/S0168-3659(99)00061-9Google Scholar
3. Lavasanifar, A., Samuel, J., Kwon, G.S., J. Biomed. Mater. Res. 52, 831835 (2000).10.1002/1097-4636(20001215)52:4<831::AID-JBM29>3.0.CO;2-K3.0.CO;2-K>Google Scholar
4. Chen, G., Imanishi, Y., Ito, Y., J. Biomed. Mater. Res., 42, 3844 (1998).10.1002/(SICI)1097-4636(199810)42:1<38::AID-JBM6>3.0.CO;2-P3.0.CO;2-P>Google Scholar
5. Folch, A., Toner, M., Annu. Rev. Biomed. Eng., 2, 227256 (2000).10.1146/annurev.bioeng.2.1.227Google Scholar
6. Liu, V. A., Jastromb, W.E., Bhatia, S.N., J. Biomed. Mater. Res., 60, 126134 (2002).10.1002/jbm.10005Google Scholar
7. Albarghouthi, M.N., Barron, A. E., Electrophoresis, 21, 40964111 (2000).10.1002/1522-2683(200012)21:18<4096::AID-ELPS4096>3.0.CO;2-W3.0.CO;2-W>Google Scholar
8. Buchholz, B.A., Doherty, E.A.S., Albarghouthi, M.N., Bogdan, F.M., Zahn, J.M., Barron, A.E., Anal. Chem., 73, 157164 (2001).10.1021/ac001023zGoogle Scholar
9. Lowe, A.B., McCormick, C.L., in ACS Symposium Series 780, 113 (2001).Google Scholar
10. Sauer, M., Streich, D., Meier, W., Adv. Mater., 13(21), 16491651 (2001).10.1002/1521-4095(200111)13:21<1649::AID-ADMA1649>3.0.CO;2-E3.0.CO;2-E>Google Scholar
11. Zha, L., Zhang, Y., Yang, W., Fu, S., Adv. Mater., 14(15), 10901092 (2002).10.1002/1521-4095(20020805)14:15<1090::AID-ADMA1090>3.0.CO;2-63.0.CO;2-6>Google Scholar
12. Catner, D.G., Buddy, D.R., Surface Science, 500, 2860 (2002).10.1016/S0039-6028(01)01587-4Google Scholar
13. Dormidontova, E.E., Macromolecules, 35, 97101 (2002).10.1021/ma010804eGoogle Scholar
14. Taylor, L.D., Cerankowski, L.D. J. Polym. Sci. Polym. Chem. Ed., 13, 25512570 (1975).10.1002/pol.1975.170131113Google Scholar
15. Laschewsky, A.; Rekai, El D.; Wischerhoff, E. Macromol. Chem. Phys., 202, 276286 (2001).10.1002/1521-3935(20010101)202:2<276::AID-MACP276>3.0.CO;2-13.0.CO;2-1>Google Scholar
16. Bokias, G.; Hourdet, D.; Iliopoulos, I. Macromolecules, 33, 29292935 (2000).10.1021/ma991409fGoogle Scholar
17. Virtanen, J.; Baron, C.; Tenhu, H. Macromolecules, 33, 336341 (2000).10.1021/ma990978kGoogle Scholar
18. Lee, J.H., Lee, H.B., Andrade, J.D., Prog. Polym. Sci., 20, 10431079 (1995).10.1016/0079-6700(95)00011-4Google Scholar
19. Bekiranov, S., Bruinsma, R., Pincus, P., Phys. Rev. E, 55(1), 577585 (1997).10.1103/PhysRevE.55.577Google Scholar
20. Rackaitis, M., Strawhecker, K., Manias, E., J. Polym. Sci. B: Polym. Phys., 40, 23392342 (2002).10.1002/polb.10284Google Scholar
21. Vandenberg, E.T.; Bertilsson, L.; Liedberg, B.; Uvdal, K.; Erlandsson, R.; Elwing, H.; Lundström, I., J. Colloid & Interface Sci., 147(1), 103118 (1991).10.1016/0021-9797(91)90139-YGoogle Scholar
22. Burnham, N.A.; Colton, R.J.; Polock, H.M. Nanotechnology, 4, 6480 (1993).10.1088/0957-4484/4/2/002Google Scholar