Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T06:13:11.201Z Has data issue: false hasContentIssue false

Theoretical and Experimental Investigation of Disordering Effects on Photoluminescence Spectra of InGaAs/InGaAsP Quantum Wells

Published online by Cambridge University Press:  10 February 2011

J. C. Yi
Affiliation:
EE Dept., Hong Ik Univ., Sangsu 72-1, Mapo, Seoul, 121-791, wave@wow.hongik, ac.kr
W. J. Choi
Affiliation:
Photonics Research Center, KIST, P.O.Box 131, Cheongryang, Seoul, 130-650, Korea.
S. Lee
Affiliation:
Photonics Research Center, KIST, P.O.Box 131, Cheongryang, Seoul, 130-650, Korea.
D.H. Woo
Affiliation:
Photonics Research Center, KIST, P.O.Box 131, Cheongryang, Seoul, 130-650, Korea.
S. H. Kim
Affiliation:
Photonics Research Center, KIST, P.O.Box 131, Cheongryang, Seoul, 130-650, Korea.
Get access

Abstract

The effect of disordering on photoluminescence spectra of InGaAs/InGaAsP quantum wells has been investigated experimentally and theoretically taking into account the valence band intermixing, strain, exciton effects, and the non-identical diffusion constants for group III and V materials. The disordering profile of 1.55Q InGaAs/InGaAsP quantum wells lattice matched to InP has been controlled by choice of the cap layer materials as well as the diffusion time and diffusion temperature. By comparing the experimental data and theoretical calculations, the diffusion constant for each material has been extracted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refrences

1. Li, E.H., Weiss, B. L. and Chan, K. S., Phys. Rev. B, 46, p. 15181 (1992).Google Scholar
2. Micallef, J., Li, E. H., Weiss, B. L., J. Appl. Phys., 73, p. 7524 (1993).Google Scholar
3. Taylor, W. J., Kuwata, N., Yoshida, I., Katsuyama, T., Hayashi, H., J.Appl. Phys., 73, p. 8653 (1993).Google Scholar
4. Gontigo, I., Krauss, T., Marsh, J. H. and Rue, R. M. De La, IEEE J. of Quantum Electron., QE-30. p. 1189 (1994).Google Scholar
5. Choi, W. J., Han, S. M., Shah, S. I., Choi, S. G., Woo, D.H., Lee, J. I., Lee, S., Han, I. K., Kim, S. H., Kang, K. N., and Cho, K., Mat. Res. Soc. Symp. Proc. 484, p. 419, (1998).Google Scholar
6. Si, S. K., Yeo, D. H., Yoon, K. H., and Kim, S. J., IEEE Sel. Top. Quantum Electron., 4, p. 619 (1998).Google Scholar
7. Yi, J. C. and Dagli, N., IEEE J. Quantum Electron., 31, p. 208 (1995).Google Scholar
8. Andreani, L. C., Pasquarello, A., Phys. Rev. B, 42, p. 8928 (1990).Google Scholar
9. Sanders, G. D. and Chang, Y.-C., Rev. B, 32, p. 5517 (1985).Google Scholar