Hostname: page-component-76dd75c94c-t6jsk Total loading time: 0 Render date: 2024-04-30T09:41:37.013Z Has data issue: false hasContentIssue false

Theoretical Study of Electron Initiated Impact Ionization Rate in Bulk GaN using a Wave Vector Dependent Numerical Transition Rate Formulation

Published online by Cambridge University Press:  21 February 2011

J. Kolnik
Affiliation:
School of ECE, Georgia Tech, Atlanta, GA 30332, kolnik@celdecl.mirc.gatech.edu
I.H. Oguzman
Affiliation:
School of ECE, Georgia Tech, Atlanta, GA 30332, kolnik@celdecl.mirc.gatech.edu
K.F. Brennan
Affiliation:
School of ECE, Georgia Tech, Atlanta, GA 30332, kolnik@celdecl.mirc.gatech.edu
R. Wang
Affiliation:
Department of Electrical Engineering, University of Minnesota. Minneapolis, MN 55455
P.P. Ruden
Affiliation:
Department of Electrical Engineering, University of Minnesota. Minneapolis, MN 55455
Get access

Abstract

In this paper, we present ensemble Monte Carlo based calculations of electron initiated impact ionization in bulk zincblende GaN using a wavevector dependent formulation of the interband impact ionization transition rate. These are the first reported estimates, either theoretical or experimental, of the impact ionization rates in GaN. The transition rate is determined from Fermi’s golden rule for a two-body screened Coulomb interaction using a numerically determined dielectric function as well as by numerically integrating over all of the possible final states. The Monte Carlo simulator includes the full details of the first four conduction bands derived from an empirical pseudopotential calculation as well as all of the relevant phonon scattering mechanisms. It is found that the ionization rate has a relatively "soft" threshold.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Strite, S. and Morkoc, H., J. Vac. Sci. Technol., B 10, 1237 (1992) and references therein.Google Scholar
2 Diamond, Silicon Carbide and Nitride Wide-Bandgap Semiconductors, Edited by Carter, C.H. Jr., Gildenblat, G., Nakamura, S., and Nemanich, R.J., MRS Symposia Proceedings No. 339 (Materials Resarch Society, Pittsburgh, 1994).Google Scholar
3 Das, P. and Ferry, D.K., Solid State Electron. 19, 851 (1976).Google Scholar
4 Littlejohn, M.A., Hauser, J.R., and Glisson, T.H., Appl. Phys. Lett. 26, 625 (1976).Google Scholar
5 Gelmont, B., Kim, K., and Shur, M., J. Appl. Phys. 74, 1818 (1993).Google Scholar
6 Mansour, N.S., Kim, K.W., and Littlejohn, M.A., J. Appl. Phys. 77, 2834 (1995).Google Scholar
7 Joshi, R.P., Dharamsi, A.N., and McAdoo, J., Apl. Phys. Lett. 64, 3611 (1994).Google Scholar
8 Kolnik, J., Oguzman, I.H., Brennan, K.F., Wang, R., Ruden, P.P., and Wang, Y., J. Appl. Phys. 78, 1033 (1995).Google Scholar
9 Fischetti, M. V. and Laux, S.E., Phys. Rev., B,38, 9721 (1988).Google Scholar
10 Chang, Y.C., Ting, D.Z.-Y., Tang, J.Y., and Hess, K., Appl. Phys. Lett. 42, 76 (1983).Google Scholar
11 Ruch, J.G and Fawcett, W., J. Appl. Phys. 41, 3843 (1970).Google Scholar
12 Sano, N., Yoshii, A., Phys. Rev. B 45, 4171 (1992).Google Scholar
13 Stobbe, M., Redmer, R., Schattke, W., Phys. Rev. B 49, 4494 (1994).Google Scholar
14 Wang, R., Ruden, P. P., Kolnik, J., Oguzman, I., and Brennan, K. F., these proceedings.Google Scholar