Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-16T02:10:59.064Z Has data issue: false hasContentIssue false

Thermal Oxidation of Si Nanoparticles Grown by Plasma-Enhanced CVD

Published online by Cambridge University Press:  17 March 2011

Debabrata Das
Affiliation:
GRM, Departament de Física, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
Jordi Farjas
Affiliation:
GRM, Departament de Física, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
Josep Costa
Affiliation:
GRM, Departament de Física, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
Pere Roura
Affiliation:
GRM, Departament de Física, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
Gregorio Viera
Affiliation:
FEMAN, Departament de Física Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, 4 planta, E08028 Barcelona, Catalonia, Spain
Enric Bertran
Affiliation:
FEMAN, Departament de Física Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, 4 planta, E08028 Barcelona, Catalonia, Spain
Get access

Abstract

Nanoparticles of amorphous silicon were grown by plasma-enhanced CVD. Their high hydrogen content has a great influence on the oxidation kinetics. Oxidation experiments done in a thermo-balance show that during a heating ramp under oxygen the onset of oxidation shifts to higher temperatures when hydrogen content is reduced by annealing. Apparently this higher oxidation rate of the as-grown particles is due to the great density of dangling bonds that are left behind just after the hydrogen is desorpted. This fact is supported by analyzing the oxidation dynamics under isothermal conditions. At lower temperature, when oxidation takes place just after hydrogen desorption, the oxidation transient begins with a finite slope which indicates that oxidation is not diffusion controlled. On the other hand, at higher temperatures, activation energy of the parabolic rate constant indicates that the oxide layer formed is less protective than the oxide layer formed on crystalline silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cabarrocas, P. Roca i, Mater. Res. Soc. Symp. Proc., 507, 855 (1998).Google Scholar
2. Viera, G., Cabarrocas, P. Roca i, Hamma, S., Sharma, S.N., Costa, J., Bertran, E., Mater. Res. Soc. Symp. Proc., 467, 313 (1997).Google Scholar
3. Viera, G., Sharma, S.N., Andújar, J.L., Zhang, R.Q., Costa, J., Bertran, E., Vacuum, 52, 183 (1999)Google Scholar
4. Costa, J., Fort, J., Suñol, J.J., Roura, P., Viera, G., Bertran, E., MRS Symp. Proc, 513, 427 (1998).Google Scholar
5. Katz, L. E., VLSI Technology, Oxidation, ed. Sze, S. M. (Mc.Graw Hill, 1983) pp.131167.Google Scholar
6. Doremus, R. H., J. Appl. Phys., 66, 4441 (1989).Google Scholar
7. Deal, B. E. and Grove, A. S., J. Appl. Phys., 36, 3770 (1965).Google Scholar
8.AIP Handbook, Section editor Zemansky, M. W., chapter IV, p.243 (1972).Google Scholar