Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-10T09:00:29.668Z Has data issue: false hasContentIssue false

Thermal Plasma Synthesis of γ-FeN, Nanoparticles as Precursors for the Fe16N2 Synthesis by Annealing

Published online by Cambridge University Press:  21 February 2011

Z. Turgut
Affiliation:
Carnegie Mellon University, Dept. of Materials Sci.& Eng
D. E. Ferguson
Affiliation:
Carnegie Mellon Research Institute Pittsburgh, PA 15213
M. Q. Huang
Affiliation:
Virginia Polytechnic Institute and State UniversityDept. of Physics, Blacksburg, VA 24061
W. E. Wallace
Affiliation:
Virginia Polytechnic Institute and State UniversityDept. of Physics, Blacksburg, VA 24061
M. E. Mchenry
Affiliation:
Carnegie Mellon University, Dept. of Materials Sci.& Eng
Get access

Abstract

An ordered Fe16N2 phase has been reported with iron moments as high as 3.2 μB. It is precipitated from nitrogen martensite structures ideally containing 10.5 at.% nitrogen. Due to the highly distorted crystal structure and metastability of this phase non-equilibrium processing routes are sought to synthesize this phase. Here we report on radio frequency (RF) plasma torch synthesis which is used to produce FeN. nanoparticles quenched into a body centered tetragonal bct) structure as precursors for further annealing studies to form α“- Fe16N2 phase. We have employed a Tekna PL-50 type 50 kW, RF plasma torch. A plasma gas mixture containing 40 standard liters per minute (slpm) Ar and 8 slpm Hydrogen - 70 slpm Ar gas was used as a sheath gas. Iron powder ( < 10 μm) was injected into the plasma stream using Ar flowing 15 slpm as a carrier gas. Nitrogen and Ammonia were used as a nitrogenization sources. Relatively low injection rates were used in order to achieve smaller particle sizes and thus faster quenching rates. We were able to produce particles containing up to 45 % of the quenched γ-phase. Observations based on x-ray diffraction (XRD) determination of lattice expansion and phase transition temperatures observed by differential thermal analysis (DTA) indicated that the quenched phase contains 6.5 atomic % nitrogen. Scherrer analysis of the fine particle broadening indicated that the average particle size for γ- phase is 27 nm, whereas this value is found to be 55 nm. for α-Fe. Nitrogen is well known for its grain size refinement in Fe thin films. Saturation magnetizations were found to be as low as 123 emu/g due to the presence of the nonmagnetic γ-FeNx phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jack, K. H., J. Appl. Phys. 76, 6620 (1994); Proc. R. Soc. London, Ser. A 208, 216 (1951).Google Scholar
2. Kim, T. K. and Takahashi, M., Appl. Phys. Lett. 20 492 (1972).Google Scholar
3. Sugita, Y., Mitsuoka, K., Komuro, M., Hoshiya, H., Kozono, Y. and Hanazono, M., J. Appl. Phys. 70, 5977 (1991).Google Scholar
4. Bezdicka, P., Klarikova, A., Paseka, I. and Zaveta, K., J. Alloys Comps. 274 10 (1998).Google Scholar
5. Coey, J. M., O'Donnell, K., Qinian, Q., Touchais, E. and Jack, K. H., J. Phys.: Condens. Matter 6, L23 (1994).Google Scholar
6. Weber, T., Wit, L. de, Saris, F. W. and Schaff, P., Thin solid Films 279, 216 (1996).Google Scholar
7. Metzger, R. M., Bao, X. and Carbucicchio, M., J. Appl. Phys. 76, 6626 (1994).Google Scholar
8. Jack, K. H., J. Appl. Phys. 76, 6620 (1994).Google Scholar
9. Sakuma, A., J. Magn. Magn. Mater. 102, 127 (1991).Google Scholar
10. Min, B. I., Phys. Rev. B 46, 8232 (1992).Google Scholar
11. Coehoorn, R., Daalderop, G. H. O. and Jansen, H. J. F., Phys. Rev. B 48, 3830 (1993).Google Scholar
12. Umino, K., Nakajima, H. and Shiiki, K., J. Magn. Magn. Mater. 153, 323 (1996).Google Scholar
13. Nakajima, H., Ohashi, Y. and Shiiki, K., J. Magn. Magn. Mater. 167, 259 (1997).Google Scholar
14. Ishida, S., Kitawatase, K., Fujii, S. and Asano, S., J. Phys. Condens. Matter 4, 765 (1992).Google Scholar
15. Sugita, Y., Takahashi, H., Komuro, M., Mitsuoka, K. and Sakuma, A., J. Appl. Phys. 76, 6637 (1994).Google Scholar
16. Sun, D. C., Jiang, E. Y. and Sun, D., Thin solid Films 298, 116 (1997).Google Scholar
17. Nakajima, K., Okamoto, S. and Okada, T., J. Appl. Phys. 65, 4357 (1989).Google Scholar
18. Takahashi, M., Shoji, H., Takahashi, H., Wakiyama, T., Dio, M. and Matsiu, M., J. Appl. Phys. 76, 6642 (1994).Google Scholar
19. Coey, J. M. D., J. Appl. Phys. 76, 6632 (1994).Google Scholar
20. Huang, M. Q., Wallace, W. E., Simizu, S. and Sankar, S. G., J. Magn. Magn. Mater. 135, 226 (1994).Google Scholar
21. Wallace, W. E. and Huang, M. Q., J. Appl. Phys. 76, 6648 (1994).Google Scholar
22. Genderen, M. J. van, Bottger, A., Cernik, R. J. and Mittemeier, E. J., Metall. Trans. A 21A, 1965 (1993).Google Scholar
23. Genderen, M. J. Van, Bottger, A. and Mittemeijer, E. J., Metall. Trans A 28A, 63 (1997).Google Scholar
24. Wriedth, H. A., Gogcen, N. A. and Nofzinger, R. H., Bull. Alloy Phase Diagrams 8, 355 (1987)Google Scholar
25. Kano, A., Kazama, N. S. and Fujimori, H., J. Appl. Phys. 53, 8332 (1982).Google Scholar
26. Peng, D-L., Sumiyama, K. and Suzuki, K, J. Alloys Comps. 259,1 (1997).Google Scholar