Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T08:50:18.316Z Has data issue: false hasContentIssue false

Thermal Properties of Non-Metallic Films by Means of Thermal Wave Techniques

Published online by Cambridge University Press:  21 February 2011

H. P. R. Frederikse
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD.
X. T. Ying
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD.
A. Feldman
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD.
Get access

Abstract

The propagation of a thermal wave into a thin film or coating depends on the thermal properties of the material. Consequently, thermal wave generation and detection can be used to obtain the heat conductivity of the material. The method is also useful because thermal wave propagation is sensitive to inhomogeneity, porosity, inclusions, voids, and delaminations. The results of two specific applications of the thermal wave technique are presented, the heat resistance of oxide coatings and of diamond films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rosencwaig, A. and Gersho, A. J. Appl. Phys 47, 64 (1976).CrossRefGoogle Scholar
2. Rosencwaig, A. in “International Advances in Non-destructive Testing” Vol.11, pp. 105174, Ed.: McGonnagle, W., (Gordon & Breach, London, 1985.)Google Scholar
3. Deposition Techniques for Films and Coatings, Bunshah, R.F., editor, (Noyes Publications, Park Ridge, NJ, 1982.)Google Scholar
4. Nordal, P.E. and Kanstad, S.O., Physica Scripta 20, 609662 (1979).CrossRefGoogle Scholar
5. Frederikse, H. and Feldman, A. in “Nondestructive Testing of High Performance Ceramics”, Eds: Vary, A. and Snyder, J. (American Ceramic Soc., Westerville, OH, 1987), pp. 177182.Google Scholar
6. Boccara, A., Fournier, D. and Badoz, J., Appl. Phys. Lett. 36, 130 (1980).CrossRefGoogle Scholar
7. Grice, K.R., Inglehart, L.J., Favro, L.D., Kuo, P.K. and Thomas, R.L., J. Appl. Phys. 54, 6245 (1983).CrossRefGoogle Scholar
8. Yeach, C.E., Melcher, R.L. and Jha, S.S., J. Appl. Phys., 53, 3947 (1982).CrossRefGoogle Scholar
9. Olmstead, M.A., Amer, N.M., Kohn, S., Fournier, D. and Boccara, A.C., Appl. Phys. A 32, 141 (1983).CrossRefGoogle Scholar
10. Lachaine, A., J. Appl. Phys., 57, 5075 (1985).CrossRefGoogle Scholar
11. Frederikse, H.P.R. and Ying, X.T., Applied Optics, in press.Google Scholar
12. Field, J.E., The Properties of Diamond [Academic Press, London, 1979].Google Scholar
13. Matsumoto, S., Sato, Y., Kamo, M. and Setaka, N., Jap. J. Appl. Phys. 21, L183 (1983).CrossRefGoogle Scholar
14. Ashok, S., Srikanth, K., Badzian, A., Badzian, T. and Messier, R., Appl. Phys. Lett., 50, 763 (1987).CrossRefGoogle Scholar
15. Sawabe, A. and Inuzuka, T., Appl. Phys. Lett. 46, 146 (1985).CrossRefGoogle Scholar
16. Morelli, D.T., Beetz, C.P. and Perry, T.A., J. Appl. Phys., 64, 3063 (1988).CrossRefGoogle Scholar
17. Berman, R., Foster, E.L. and Ziman, J.M., Proc. Roy. Soc., London, Ser. A 237, 344 (1956).Google Scholar
18. Ono, A., Baba, T., Funamoto, H. and Nishikawa, A., Jap. J. Appl. Phys. 25, L808 (1986).CrossRefGoogle Scholar
19. We thank Thomas Anthony of the General Electric Research Center for supplying these samples.Google Scholar
20. American Institute of Physics Handbook, 3rd Edition McGraw Hill, New York (1972), p. 4106.Google Scholar