Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-19T22:36:48.656Z Has data issue: false hasContentIssue false

Thermal Stability of InGaAs Quantum Dots Under Large Temperature Transients

Published online by Cambridge University Press:  26 February 2011

R. Rangarajan
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801
V. C. Elarde
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801
J. J. Coleman
Affiliation:
Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801
Get access

Abstract

We report here studies of the thermal stability of InGaAs quantum dots that have been subjected to various thermal treatments. Atomic force microscopy and photoluminescence spectroscopy are used to analyze the effects of the thermal treatments. In this paper we present data that demonstrates a remarkable improvement in the thermal stability of quantum dots that were rapidly cooled down to room temperature following the growth of a GaAs capping layer. The observed thermal behavior is attributed to metastable states formed during post growth thermal cycle.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jimenez, J. L., Fonseca, L. R. C., Brady, D. J., Leburton, J. P., Wohlert, D. E., and Cheng, K. Y., Appl. Phys. Lett. 71, 35583560 (1997).Google Scholar
2. Deppe, D. G., Kudari, A., Huffaker, D. L., Deng, H., Deng, Q., and Campbell, J. C., IEEE Photon. Technol. Lett. 10, 252254 (1998).Google Scholar
3. Stiff, A. D., Krishna, S., Bhattacharya, P., and Kennerly, S. W., IEEE J. Quantum Electron. 37, 14121419 (2001).Google Scholar
4. Shiang-Feng, T., Lin, S. Y., and Si-Chen, L., Appl Phys. Lett. 78, 24282430 (2001).Google Scholar
5. Sellin, R. L., Ribbat, C., Grundmann, M., Ledentsov, N. N., and Bimberg, D., Appl. Phys. Lett. 78, 12071209 (2001).Google Scholar
6. Deppe, D. G. and Huffaker, D. L., Appl. Phys. Lett. 77, 33253327 (2000).Google Scholar
7. Mo, Q.W., Fan, T.W., Gong, Q., Wu, J., Wang, Z.G., and Bai, Y. Q., Appl. Phys.Lett. 73, 35183520 (1998).Google Scholar
8. Leon, R., Kim, Y., Jagadish, C., Gal, M., Zou, J., and Cockayne, D., Appl. Phys. Lett. 69, 18881890 (1996).Google Scholar
9. Kosogov, A. O., Kosogov, A. O., Werner, P., Gösele, U., Ledentsov, N. N., Bimberg, D., Ustinov, V. M., Egorov, A. Yu., Zhukov, A. E., Kop'ev, P. S., Bert, N. A., and Alferov, Zh. I., Appl. Phys. Lett. 69, 30723074 (1996).Google Scholar
10. Fafard, S. and Allen, C. Ni., Appl. Phys. Lett. 75, 23742376 (1999).Google Scholar
11. Leon, R., Farfard, S., Piva, P.G, Ruvimov, S. and Liliental-Weber, Z, Phys. Rev. B 58, R4262R4265 (1998).Google Scholar
12. Leon, R., Farfard, S., Leonard, D., Merz, J.L. and Petroff, P.M., App. Phys. Lett. 67, 521523 (1995).Google Scholar
13. Ryu, S. W., Kim, In, Choe, B. D., and Jeong, W. G., Appl. Phys. Lett. 67, 14171419 (1995).Google Scholar
14. Price, G.L. and Usher, B.F., Appl. Phys. Lett. 55, 19841986 (1989).Google Scholar