Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-04-30T15:12:25.108Z Has data issue: false hasContentIssue false

Thermal Stability of Nanostructured TiN-TiB2 Thin Films

Published online by Cambridge University Press:  01 February 2011

Paul H. Mayrhofer
Affiliation:
Department of Physical Metallurgy and Materials Testing, University of Leoben, A-8700 Leoben, Austria
Christian Mitterer
Affiliation:
Department of Physical Metallurgy and Materials Testing, University of Leoben, A-8700 Leoben, Austria
Get access

Abstract

Nanocrystalline hard films have attracted increasing interest for wear-resistant applications. Especially, films within the system Ti-B-N with its numerous different phases are ideal candidates for materials science based studies on the nanoscale. In physical vapor deposited Ti-B-N films the nanostructure arises during growth by segregation-driven renucleation resulting in 2–3 nm sized TiN and TiB2 crystals. These films exhibit a hardness of ∼ 42 GPa in the as-deposited state which increases to ∼ 52 GPa during thermal annealing in vacuum. Here we show, that as-deposited films have a remarkable fraction of disordered regions surrounding TiN and TiB2 nanocrystals. During thermal annealing, the structural rearrangement causes the formation of compact boundary areas, leading to a hardness increase. At temperatures higher than 900 °C, the occurring B-loss, grain-growth, and recrystallization cause the hardness to decrease.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Herr, W., Matthes, B., Broszeit, E., and Kloos, K.H., Mater. Sci. Engin. A 140, 626 (1991).Google Scholar
2. Gissler, W., Surf. Coat. Technol. 68–69, 556 (1994).Google Scholar
3. Stoiber, M., Perlot, S., Mitterer, C., Beschliesser, M., Lugmair, C., and Kullmer, R., Surf. Coat. Technol. 177–178, 348 (2004).Google Scholar
4. Mayrhofer, P.H., Mitterer, C., Wen, J.G., Greene, J.E., and Petrov, I., Appl. Phys. Lett., submitted (2004).Google Scholar
5. Mollart, T.P., Baker, M., Haupt, J., Steiner, A., Hammer, P., and Gissler, W., Surf. Coat. Technol. 74–75, 491 (1995).Google Scholar
6. Losbichler, P. and Mitterer, C., Surf. Coat. Technol. 97, 567 (1997).Google Scholar
7. Karvánková, P., Vepr^ek-Heijman, M.G.J., Zawrah, M.F., and Vepr^ek, S., Thin Solid Films 467, 133 (2004).Google Scholar
8. Mitterer, C., Rauter, M., and Rödhammer, P., Surf. Coat. Technol. 41, 351 (1990).Google Scholar
9. Wiedemann, R., Weihnacht, V., and Oettel, H., Surf. Coat. Technol. 116–119, 302 (1999).Google Scholar
10. Vepr^ek, S. and Reiprich, S., Thin Solid Films 268, 64 (1995).Google Scholar
11. Mayrhofer, P.H., Hörling, A., Karlsson, L., Sjölén, J., Larsson, T., Mitterer, C., and Hultman, L., Appl. Phys. Lett. 83(10), 2049 (2003).Google Scholar
12. Hultman, L., Vacuum 57, 1 (2000).Google Scholar
13. Mayrhofer, P.H., Mitterer, C., Wen, J.G., Petrov, I., and Greene, J.E., Acta Mat., to be submitted (2005).Google Scholar
14. Mayrhofer, P.H. in Nato Science Series II. Mathematics Physics and Chemsitry, edited by Voevodin, A.A et al., (Kluwer 155, Amsterdam, 2004) pp. 5768.Google Scholar
15. Mayrhofer, P.H., Willmann, H., and Mitterer, C., Thin Solid Films 440, 174 (2003).Google Scholar
16. Karvánková, P., Vepr^ek-Heijman, M.G.J., Zindulky, O., Bergmaier, A., and Vepr^ek, S., Surf. Coat. Technol. 163–164, 149 (2003).Google Scholar
17. Humphreys, F.J. and Hatherly, M. (eds.), Recrystallization and Related Annealing Phenomena, (Elsevier, Oxford, 1995).Google Scholar
18. Losbichler, P. and Mitterer, C., Surf. Coat. Technol. 97, 567 (1997).Google Scholar
19. Petrov, I., Orlinov, V., Ivanov, I., and Kourtev, J., Contrib. Plasma Phys. 28, 2 (1988).Google Scholar
20. Mittemeijer, E.J. and Scardi, P. (eds.), Diffraction Analysis of the Microstructure of Materials, (Springer, Berlin, 2004).Google Scholar
21. Suryanarayana, C., Int. Mat. Rev. 40(2), 41 (1995).Google Scholar
22. Powder Diffraction File (Card 33–397), JCPDS-International Center for Diffraction Data, (Swarthmore, PA, 2001).Google Scholar
23. Pharr, G.M., Mater. Sci. Eng. A 253(1–2), 151 (1998).Google Scholar
24. Schiøtz, J., Vegge, T., Di Tolla, F.D., and Jacobsen, K.W., Phys. Rev. B 60(17), 11971 (1999).Google Scholar