Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-20T13:25:41.277Z Has data issue: false hasContentIssue false

Thermal Transport in Intercalated Graphite

Published online by Cambridge University Press:  15 February 2011

J-P. Issi*
Affiliation:
Laboratoire de Physico-Chimie et de Physique de l'Etat Solide, Université Catholique de Louvain, 1 Place Croix du Sud, B–1348 Louvain-la-Neuve, Belgium
Get access

Abstract

Recent results on the temperature and stage dependence of the thermal conductivity of various graphite intercalation compounds are reported and briefly analyzed. In the lowest temperature range the in-plane thermal conductivity which is mainly electronic, is higher than that of pristine graphite. Around room temperature, in spite of an increased electronic conduction, a decrease in the total thermal conductivity relative to pristine graphite is observed. This shows that the dominant effect is the decrease of the lattice contribution due to increased phonon scattering by lattice defects. The c-axis conduction is attributed entirely to phonons and the anisotropy ratio is of order of 102 in the liquid helium range and increases up to several hundreds around room temperature. Some results on the temperature variation of the in-plane and c-axis thermopower for donor and acceptor compounds are also presented and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Drabble, J. R. and Goldsmid, H. J., Thermal Conduction in Semiconductors (Pergamon Press, Oxford, 1961).Google Scholar
2. Parrot, J. E. and Stuckes, A. D., Thermal Conductivity of Solids (Pion, London, 1975).Google Scholar
3. Berman, R., Thermal Conduction in Solids (Clarendon Press, Oxford, 1976).Google Scholar
4. White, G. K., Thermal Conductivity, Tye, R. P. ed. (Academic Press, London, 1969), vol. 1, p. 69.Google Scholar
5. Klemens, P. G., Thermal Conductivity, Tye, R. P. ed. (Academic Press, New York 1969) vol. 1, p. 1.Google Scholar
6. Klemens, P. G., Encyclopedia of Physics, Flügge, S. ed. (Springer-Verlag, Berlin, 1956) volume XIV, P, 198.Google Scholar
7. Hooker, C. N., Ubbelohde, A. R. and Young, D. A., Proc. Roy. Soc. A276, 83 (1963).Google Scholar
8. Hooker, C. N., Ubbelohde, A. R. and Young, D. A., Proc. Roy. Soc. A284, 17 (1965).Google Scholar
9. Hooker, C. N., Ubbelohde, A. R. and Young, D. A., Proc. Second SCI Conference on Industrial Carbons and Graphites, (SCI, London, 1967).Google Scholar
10. Kelly, B. T., Carbon 5, 247 (1967).Google Scholar
11. Kelly, B. T., Carbon 6, 71 (1968).Google Scholar
12. de Combarieu, A., Le Journal de Physique 28, 951 (1967).Google Scholar
13. Dreyfus, B. and Maynard, R., Le Journal de Physique 28, 955 (1967).Google Scholar
14. Nihira, T. and Iwata, T., Japanese J. Applied Phys. 14, 1099 (1975).CrossRefGoogle Scholar
15. Klein, C. A. and Holland, M. G., Phys. Rev. 136, 575 (1964).Google Scholar
16. Taylor, R. E., Phil. Mag. 13, 157 (1966).CrossRefGoogle Scholar
17. Slack, G., Phys. Rev. 136, 694 (1964).Google Scholar
18. Kelly, B. T., Physics of Graphite (Applied Science Publishers, London, 1981).Google Scholar
19. Holland, M. G., Klein, C. A. and Straub, W. D., J. Phys. Chem. Solids 27, 903 (1966).Google Scholar
20. Chau, C. K. and Liu, S. Y., J. Low Temperature Physics 15, 447 (1974).Google Scholar
21. Heremans, J., Issi, J-P., Zabala-Martinez, I., Shayegan, M. and Dresselhaus, M. S., Physics Letters 84A, 387 (1981).Google Scholar
22. Poulaert, B., Heremans, J., Issi, J-P., Zabala-Martinez, I., Mazurek, H. and Dresselhaus, M. S., Extended Abstracts 15th Biennial Carbon Conf., Forsman, W. C. ed. (1981) p. 92.Google Scholar
23. Issi, J-P., Heremans, J. and Dresselhaus, M. S., Phys. Rev. B (in press).Google Scholar
24. Boxus, J., Poulaert, B., Issi, J-P., Mazurek, H. and Dresselhaus, M. S., Solid State Commun. 38, 1117 (1981).Google Scholar
25. Elzinga, M., Morelli, D. T. and Uher, C., Phys. Rev. B (in press).Google Scholar
26. Blatt, F. J., Zabala-Martinez, I., Heremans, J., Issi, J-P., Shayegan, M. and Dresselhaus, M. S., Phys. Rev. B (in press).Google Scholar
27. Blackman, L. C. F., Mathews, J. F. and Ubbelohde, A. R., Proc. Roy. Soc., 258A, 339 (1960).Google Scholar
28. Ubbelohde, A. R., Carbon 6, 177 (1968).CrossRefGoogle Scholar
29. Issi, J-P., Boxus, J., Poulaert, B., Mazurek, H. and Dresselhaus, M. S., J. Phys. C : Solid State Phys. 14, L307 (1981).Google Scholar
30. Issi, J-P., Poulaert, B., Heremans, J. and Dresselhaus, M. S., Solid State Communications (in press).Google Scholar
31. Heremans, J., Shayegan, M., Dresselhaus, M. S. and Issi, J-P., Phys. Rev. B (in press).Google Scholar
32. Issi, J-P., Heremans, J. and Dresselhaus, M. S., Physics of Intercalation Compounds, Pietronero, L.and Tosatti, E. eds. (Springer-Verlag, Berlin 1981) p. 310.Google Scholar
33. Callaway, J., Phys. Rev. 113, 1046 (1959).Google Scholar
34. Dresselhaus, M. S. and Dresselhaus, G., Advances in Physics 30, 139 (1981).Google Scholar
35. “Thermal Conductivity”, The TPRC data series, Touloukian, Y. S. ed. (IFI / Plenum, New York 1970).Google Scholar
36. Blatt, F. J., Physics of electronic Conduction in Solids (Mc Graw Hill, New York 1968).Google Scholar
37. Issi, J-P., Revue de Chimie Minérale 19, 394 (1982).Google Scholar